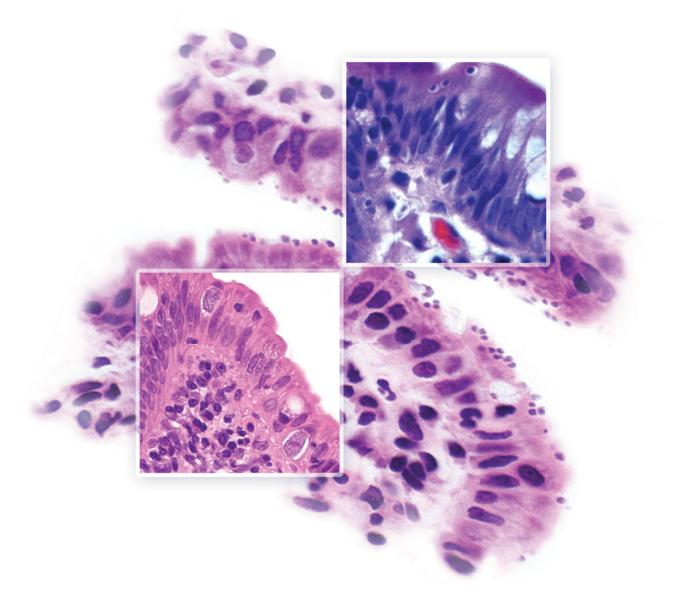

Get Full Access and More at

ExpertConsult.com

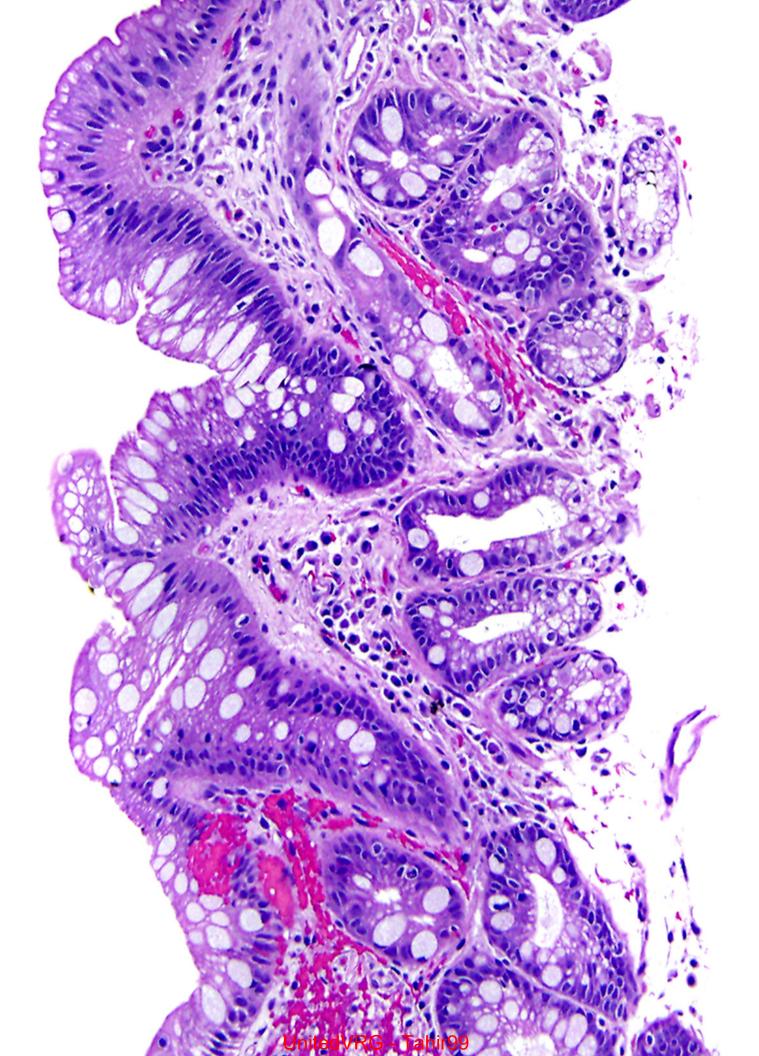
diagnostic pathology Gastrointestinal

GREENSON

UnitedVRG - Tahir99


DIAGNOSTIC PATHOLOGY

Gastrointestinal


SECOND EDITION

GREENSON

LAUWERS • MONTGOMERY • OWENS POLYDORIDES • SRIVASTAVA

UnitedVRG - Tahir99

DIAGNOSTIC PATHOLOGY

Gastrointestinal

SECOND EDITION

Joel K. Greenson, MD

Professor of Pathology Director of Gastrointestinal Pathology Department of Pathology University of Michigan Medical Center Ann Arbor, Michigan

Gregory Y. Lauwers, MD

Professor of Pathology Harvard Medical School Vice Chair, Department of Pathology Massachusetts General Hospital Boston, Massachusetts

Elizabeth A. Montgomery, MD

Professor of Pathology and Oncology and Orthopedic Surgery Johns Hopkins University Medical Institutions Baltimore, Maryland

Scott R. Owens, MD

Associate Professor Director, Division of Quality and Health Improvement Department of Pathology University of Michigan Medical School Ann Arbor, Michigan

Alexandros D. Polydorides, MD, PhD

Associate Professor of Pathology and Medicine (Gastroenterology) Icahn School of Medicine at Mount Sinai New York, New York

Amitabh Srivastava, MD

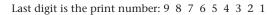
Associate Professor of Pathology Harvard Medical School Associate Director, Surgical Pathology Director, Surgical Pathology Fellowship Program Brigham and Women's Hospital Boston, Massachusetts

1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899

DIAGNOSTIC PATHOLOGY: GASTROINTESTINAL, SECOND EDITION

ISBN: 978-0-323-37673-0

Copyright © 2016 by Elsevier. All rights reserved.


No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/ permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. With respect to any drug or pharmaceutical products identified, readers are advised to check the most current information provided (i) on procedures featured or (ii) by the manufacturer of each product to be administered, to verify the recommended dose or formula, the method and duration of administration, and contraindications. It is the responsibility of practitioners, relying on their own experience and knowledge of their patients, to make diagnoses, to determine dosages and the best treatment for each individual patient, and to take all appropriate safety precautions. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein. Publisher Cataloging-in-Publication Data Diagnostic pathology. Gastrointestinal / [edited by] Joel K. Greenson. 2nd edition. pages ; cm Gastrointestinal Includes bibliographical references and index. ISBN 978-0-323-37673-0 (hardback) 1. Gastrointestinal system--Diseases--Diagnosis--Handbooks, manuals, etc. 2. Pathology, Surgical--Handbooks, manuals, etc. 3. Gastrointestinal system--Diseases--Diagnosis--Atlases. 4. Pathology, Surgical--Atlases. I. Greenson, Joel K. II. Title: Gastrointestinal. [DNLM: 1. Gastrointestinal Diseases--diagnosis--Atlases. 2. Gastrointestinal Tract-pathology--Atlases. WI 17] RC802.9 .D525 2015 616.3/3075--dc23 International Standard Book Number: 978-0-323-37673-0

Cover Designer: Tom M. Olson, BA

Printed in Canada by Friesens, Altona, Manitoba, Canada

Working together to grow libraries in developing countries

www.elsevier.com • www.bookaid.org

UnitedVRG - Tahir99

Dedications

A project like this is always the result of teamwork on many different levels. I would like to thank my parents, Walter and Louise Greenson, for teaching me the value of a good education and for providing the means for me to get one. I would also like to thank Henry D. Appelman, Stephen A. Geller, and John H. Yardley for being great role models/mentors. I would like to acknowledge the hard work and dedication of all of my coauthors and all the members of the Amirsys team. Lastly, to Jann, Hannah, and Sarah—the three amazing women in my life to whom I owe everything—thank you for putting up with me!

JKG

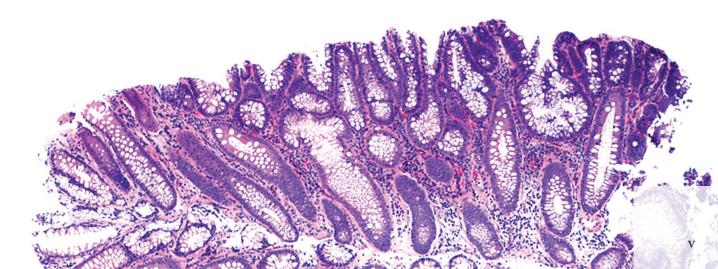
To my family.

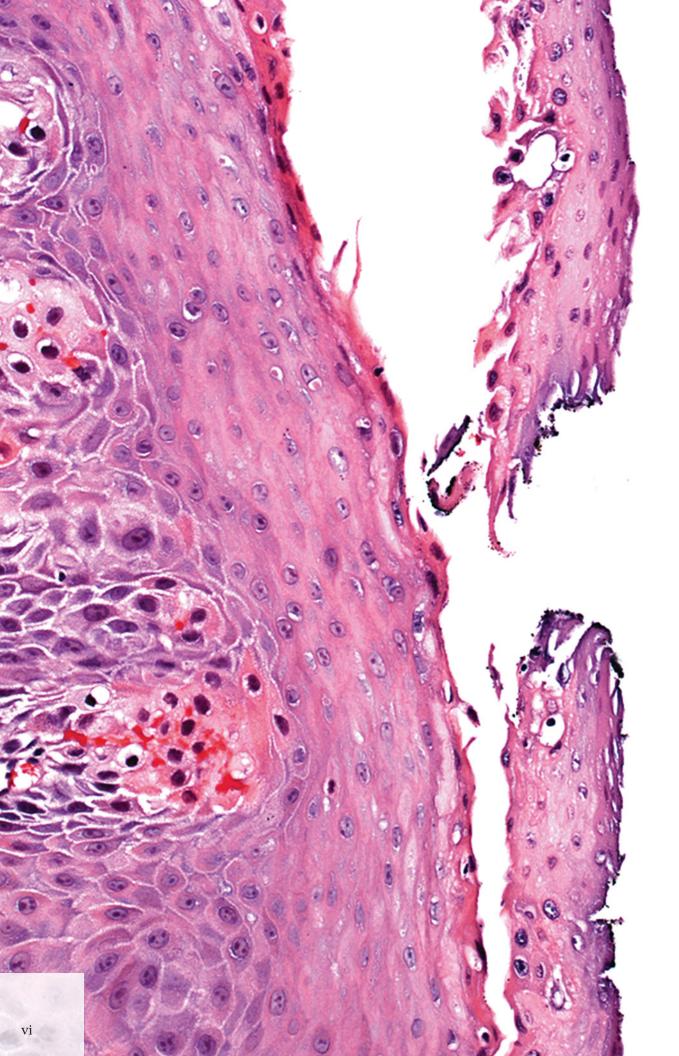
SRO

To all my mentors, past and present, for teaching me the art and science of pathology, and to all students, residents, and fellows, present and future, to whom I hope to pass that on.

ADP

To the colleagues and trainees who make it a privilege to practice pathology each and every day.


EAM


To my father, Bepin, whose spirit continues to guide me, my mom, Shashi, for being an incredible example of integrity and resilience, to my wife, Mamta, and my son, Sachin, for their incredible love and support, and finally to my assistant, Debby O'Leary, for bringing order to my professional life.

AS

To my wife, Cindy, and my three sons, Damian, Sean, and Timothy, for their continuing support and encouragement, and to my parents, Maurice and Renee, for their unwavering love. Finally, many thanks to my assistant of many years, Laura Nakatsuka, whose professionalism helped me every step of the way.

GYL

Contributing Authors

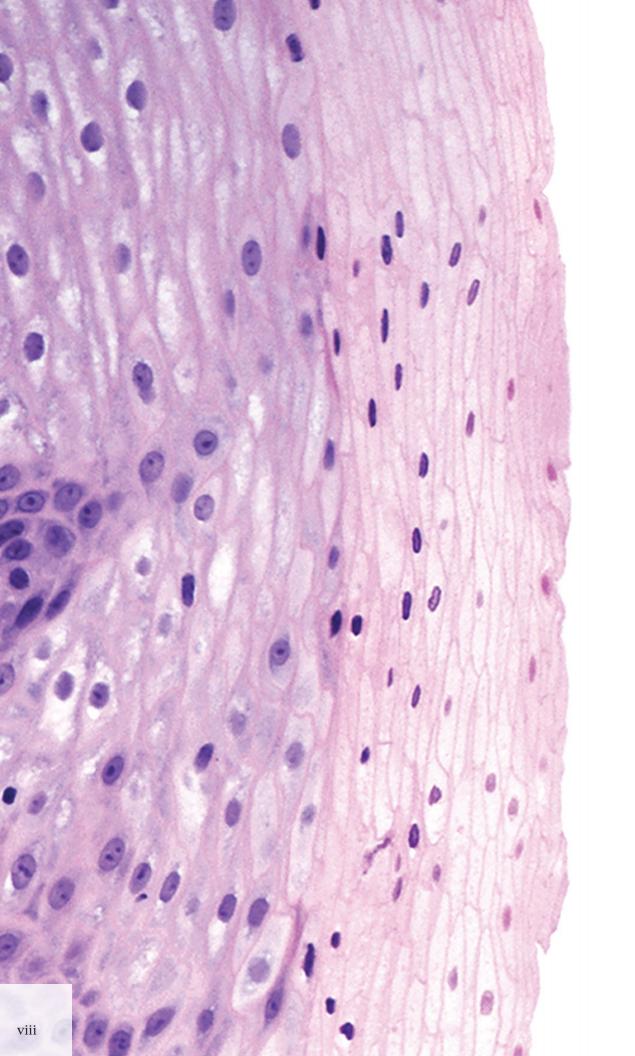
Mamta Gupta, MD

Consultant, Gynecologic and Genitourinary Pathology Department of Pathology Instructor of Pathology, Harvard Medical School Beth Israel Deaconess Medical Center Boston, Massachusetts

Laura Webb Lamps, MD

Professor and Vice Chair for Academic Affairs University of Arkansas for Medical Sciences Little Rock, Arkansas

Nicole C. Panarelli, MD


Assistant Professor of Pathology and Laboratory Medicine Weill Cornell Medical College New York, New York

Sharon K. Bihlmeyer, MD

Department of Pathology Associate Chair IHA Pathology & Laboratory Management Ann Arbor, Michigan

Julianne K. Purdy, MD

Gastrointestinal Pathologist Poplar Healthcare, PLLC Memphis, Tennessee

Preface

As we wade deeper into the information age and the database of medical research expands exponentially, it becomes more and more difficult to keep an up-to-date working knowledge of all the things one encounters on a typical day of surgical pathology sign out. Given the number of new immunostains, molecular genetic tests, and the demands of personalized medicine, the surgical pathologist can easily become overwhelmed, both with the amount of material to master and the amount of time required to do so.

The goal of *Diagnostic Pathology: Gastrointestinal, Second Edition* is to provide quick, up-todate information on gastrointestinal pathology, both visual and factual, to either help the pathologist arrive at the correct diagnosis or refresh his or her memory about the diagnosis itself. Instead of full prose text, we have provided a stripped-down outline format. The key facts regarding each diagnosis are then highlighted in a box for ease of use. Tables highlighting the salient immunostains &/or molecular tests useful in the differential diagnosis of lesions are provided when appropriate, and all diagnoses are illustrated with high-quality color images taken with the intent of mimicking real practice.

We hope that this book is useful as a quick reference at the microscope during sign out, whether to look up something as esoteric as microsporidia or something as common as serrated colorectal polyps. Lastly, owners of *Diagnostic Pathology: Gastrointestinal, Second Edition* will also receive Expert Consult, the eBook version that provides online access to all information and images contained in this text.

We hope you find both the format and the content of this book to be useful in your quest to provide accurate and informative gastrointestinal pathology reports.

Joel K. Greenson, MD

Professor of Pathology Director of Gastrointestinal Pathology Department of Pathology University of Michigan Medical Center Ann Arbor, Michigan

Acknowledgments

Text Editors

Dave L. Chance, MA, ELS Arthur G. Gelsinger, MA Nina I. Bennett, BA Sarah J. Connor, BA Tricia L. Cannon, BA Terry W. Ferrell, MS Lisa A. Gervais, BS

Image Editors

Jeffrey J. Marmorstone, BS Lisa A. M. Steadman, BS

Medical Editors

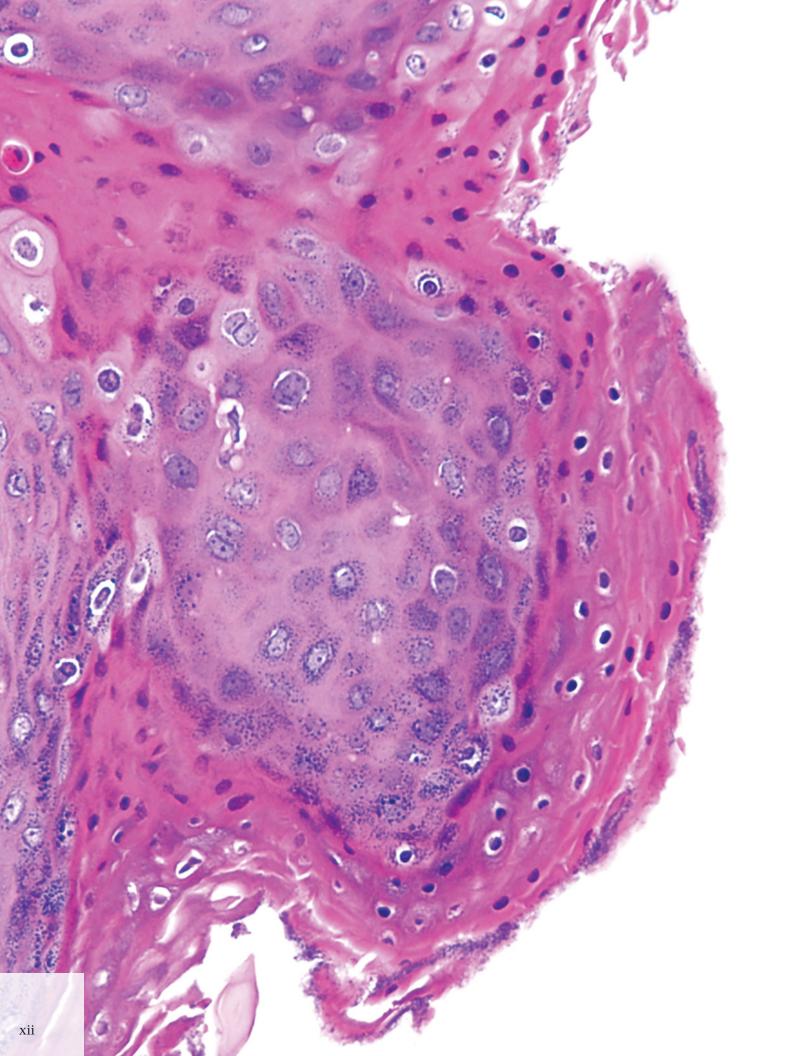
Suntrea T.G. Hammer, MD

Illustrations

Laura C. Sesto, MA Lane R. Bennion, MS Richard Coombs, MS

Art Direction and Design

Tom M. Olson, BA Laura C. Sesto, MA


Lead Editor

Rebecca L. Hutchinson, BA

Production Coordinators

Angela G. Terry, BA Rebecca L. Hutchinson, BA

Sections

Part I: Esophagus

SECTION 1: Nonneoplastic SECTION 2: Neoplastic

Part II: Stomach

SECTION 1: Nonneoplastic SECTION 2: Neoplastic

Part III: Small Intestine

SECTION 1: Nonneoplastic SECTION 2: Neoplastic

Part IV: Appendix

SECTION 1: Nonneoplastic SECTION 2: Neoplastic

Part V: Colon

SECTION 1: Nonneoplastic SECTION 2: Neoplastic

Part VI: Anus

SECTION 1: Nonneoplastic SECTION 2: Neoplastic

Part VII: Multiple Organs

SECTION 1: Nonneoplastic SECTION 2: Neoplastic

Part I: Esophagus

SECTION 1: NONNEOPLASTIC

- Tracheoesophageal Fistula and Esophageal Atresia Alexandros D. Polydorides, MD, PhD
 Esophageal Duplication Cyst
- Alexandros D. Polydorides, MD, PhD 12 Inlet Patch
- Alexandros D. Polydorides, MD, PhD 16 Esophageal Webs and Rings
- Alexandros D. Polydorides, MD, PhD 18 Esophageal Diverticula
- Alexandros D. Polydorides, MD, PhD 24 Esophageal Varices
- Alexandros D. Polydorides, MD, PhD 26 Esophageal Tears and Perforations
- Alexandros D. Polydorides, MD, PhD 28 Achalasia
- Alexandros D. Polydorides, MD, PhD
- 32 Gastroesophageal Reflux Disease Alexandros D. Polydorides, MD, PhD
- 38 Eosinophilic Esophagitis Alexandros D. Polydorides, MD, PhD
- 42 Pill-Induced Esophagitis Elizabeth A. Montgomery, MD
- 46 Corrosive Damage (Lye) Elizabeth A. Montgomery, MD
- 48 Sloughing Esophagitis Alexandros D. Polydorides, MD, PhD and Julianne K. Purdy, MD
- 50 Candidal Esophagitis Joel K. Greenson, MD and Laura Webb Lamps, MD
- 52 HIV-Associated Esophageal Ulcers Joel K. Greenson, MD and Laura Webb Lamps, MD
- 54 Barrett Esophagus Elizabeth A. Montgomery, MD

SECTION 2: NEOPLASTIC

- 68 Dysplasia in Barrett Esophagus Elizabeth A. Montgomery, MD
- 78 Adenocarcinoma, Esophagus Elizabeth A. Montgomery, MD
- 84 Squamous Papilloma Elizabeth A. Montgomery, MD
- 86 Squamous Dysplasia Elizabeth A. Montgomery, MD
- 92 Squamous Cell Carcinoma, Esophagus Elizabeth A. Montgomery, MD

- 96 Fibrovascular Polyp Elizabeth A. Montgomery, MD
 100 Granular Cell Tumor
- Elizabeth A. Montgomery, MD

Part II: Stomach

SECTION 1: NONNEOPLASTIC

- 106 **Pyloric Stenosis** Amitabh Srivastava, MD 108 Gastric Antral Vascular Ectasia Amitabh Srivastava, MD 110 **Dieulafoy Lesion** Alexandros D. Polydorides, MD, PhD Portal Hypertensive Gastropathy 114 Amitabh Srivastava, MD Acute Hemorrhagic Gastritis 116 Gregory Y. Lauwers, MD 118 Chemical Gastropathy Gregory Y. Lauwers, MD 120 Gastric Mucosal Calcinosis Gregory Y. Lauwers, MD Iron Gastropathy 122 Gregory Y. Lauwers, MD 124 Gastric Ulcers Gregory Y. Lauwers, MD Carditis 126 Amitabh Srivastava, MD 128 Helicobacter pylori Gregory Y. Lauwers, MD 132 Helicobacter heilmannii Amitabh Srivastava, MD Multifocal Atrophic Gastritis 134 Amitabh Srivastava, MD 136 Autoimmune Gastritis Gregory Y. Lauwers, MD 140 Lymphocytic Gastritis Gregory Y. Lauwers, MD **Eosinophilic Gastroenteritis** 142 Gregory Y. Lauwers, MD 144 **Granulomatous Gastritis** Gregory Y. Lauwers, MD 146 **Phlegmonous Gastritis** Amitabh Srivastava. MD Herpes Zoster Infection 148 Joel K. Greenson, MD and Laura Webb Lamps, MD
 - **150** Gastric Xanthoma Gregory Y. Lauwers, MD

152 154 156 158	Fundic Gland Polyp Gregory Y. Lauwers, MD Hyperplastic Polyps, Stomach Gregory Y. Lauwers, MD Ménétrier Disease Gregory Y. Lauwers, MD Zollinger-Ellison Syndrome Gregory Y. Lauwers, MD
	SECTION 2: NEOPLASTIC
162	Adenoma/Dysplasia, Stomach Gregory Y. Lauwers, MD
166	Adenocarcinoma, Stomach Gregory Y. Lauwers, MD
172	Adenocarcinoma, Special Variants Gregory Y. Lauwers, MD
176	Hereditary Diffuse Gastric Cancer Joel K. Greenson, MD
178	Well-Differentiated Neuroendocrine Tumor (Carcinoid), Stomach Gregory Y. Lauwers, MD
184	MALT Lymphoma Scott R. Owens, MD
192	Large Cell Lymphoma Scott R. Owens, MD
198	Mantle Cell Lymphoma Scott R. Owens, MD

Part III: Small Intestine

SECTION 1: NONNEOPLASTIC

- 204 Small Intestine Duplication Cyst Joel K. Greenson, MD
 206 Meckel Diverticulum Joel K. Greenson, MD
- 208 Gastric Heterotopia Joel K. Greenson, MD
- 210 Ectopic Pancreas Joel K. Greenson, MD
- 212 Microvillous Inclusion Disease Joel K. Greenson, MD
- 214 Necrotizing Enterocolitis Joel K. Greenson, MD
- 216 Primary Lymphangiectasia Joel K. Greenson, MD
- 218 Peptic Duodenitis/Duodenal Ulcer Joel K. Greenson, MD
- 220 Celiac Disease Joel K. Greenson, MD
- 226 Tropical Sprue Joel K. Greenson, MD
- 230 Bacterial Overgrowth/Stasis Joel K. Greenson, MD
- 232 Olmesartan Enteropathy Joel K. Greenson, MD
- 234 Autoimmune Enteropathy Joel K. Greenson, MD

238	Pouchitis
	Joel K. Greenson, MD
240	Whipple Disease
244	Joel K. Greenson, MD and Laura Webb Lamps, MD
244	Common Variable Immunodeficiency Joel K. Greenson, MD and Laura Webb Lamps, MD
248	Giardia
240	Joel K. Greenson, MD and Laura Webb Lamps, MD
250	Cryptosporidia
230	Joel K. Greenson, MD and Laura Webb Lamps, MD
254	Isospora
	Joel K. Greenson, MD and Laura Webb Lamps, MD
256	Cyclospora
	Joel K. Greenson, MD and Laura Webb Lamps, MD
258	Microsporidia
	Joel K. Greenson, MD and Laura Webb Lamps, MD
260	Yersinia Infection
	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
264	Mycobacterium avium-intracellulare
266	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
200	<i>Mycobacterium tuberculosis</i> Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
268	Strongyloides Infection
200	Joel K. Greenson, MD and Laura Webb Lamps, MD
	SECTION 2: NEOPLASTIC
274	SECTION 2: NEOPLASTIC Adenoma, Small Intestine
274	Adenoma, Small Intestine Joel K. Greenson, MD
274 276	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine
276	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD
	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor
276	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine
276 278	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD
276	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma
276 278 284	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD
276 278	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma
276 278 284	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD
276 278 284 290	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD
276 278 284 290	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD Waldenström Protein
276 278 284 290 296	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD Waldenström Protein Scott R. Owens, MD
276 278 284 290 296	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD Waldenström Protein
276 278 284 290 296	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD Waldenström Protein Scott R. Owens, MD
276 278 284 290 296	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD Waldenström Protein Scott R. Owens, MD 't IV: Appendix SECTION 1: NONNEOPLASTIC
276 278 284 290 296 Par	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD Waldenström Protein Scott R. Owens, MD
276 278 284 290 296 Par	Adenoma, Small Intestine Joel K. Greenson, MD Adenocarcinoma, Small Intestine Joel K. Greenson, MD Well-Differentiated Neuroendocrine Tumor (Carcinoid), Small Intestine Joel K. Greenson, MD Gangliocytic Paraganglioma Elizabeth A. Montgomery, MD Enteropathy-Associated T-Cell Lymphoma Scott R. Owens, MD Waldenström Protein Scott R. Owens, MD 't IV: Appendix SECTION 1: NONNEOPLASTIC Acute Appendicitis

- 308 Enterobius vermicularis Appendicitis Amitabh Srivastava, MD and Laura Webb Lamps, MD
 310 Fibrous Obliteration
- Scott R. Owens, MD

SECTION 2: NEOPLASTIC

- 314 Serrated Polyps, Appendix Scott R. Owens, MD
- 316 Appendiceal Mucinous Neoplasms Scott R. Owens, MD

- 322 Well-Differentiated Neuroendocrine Tumor (Carcinoid), Appendix
- Scott R. Owens, MD 326 Goblet Cell Carcinoid Scott R. Owens, MD

Part V: Colon

SECTION 1: NONNEOPLASTIC

334	Hirschsprung Disease
	Alexandros D. Polydorides, MD, PhD
340	Colonic Duplications, Cysts, and Congenital
	Diverticula
	Alexandros D. Polydorides, MD, PhD
342	Motility Disorders
	Scott R. Owens, MD
344	Diverticular Disease
5	Alexandros D. Polydorides, MD, PhD and Sharon K.
	Bihlmeyer, MD
350	Endometriosis
550	Mamta Gupta, MD and Sharon K. Bihlmeyer, MD
354	Preparation Artifacts
554	
	Alexandros D. Polydorides, MD, PhD and Julianne K.
	Purdy, MD
356	Melanosis Coli
	Alexandros D. Polydorides, MD, PhD
360	Ulcerative Colitis, Colon
	Scott R. Owens, MD
368	Crohn Disease
	Alexandros D. Polydorides, MD, PhD
380	Lymphocytic Colitis
	Alexandros D. Polydorides, MD, PhD and Julianne K.
	Purdy, MD
384	Collagenous Colitis
	Alexandros D. Polydorides, MD, PhD and Julianne K.
	Purdy, MD
390	Eosinophilic/Allergic Colitis
	Alexandros D. Polydorides, MD, PhD and Julianne K.
	Purdy, MD
394	Diversion Colitis
574	Amitabh Srivastava, MD and Sharon K. Bihlmeyer, MD
396	Diverticular Disease-Related Colitis
390	Amitabh Srivastava, MD
400	Solitary Rectal Ulcer Syndrome/Mucosal Prolapse
400	
	Alexandros D. Polydorides, MD, PhD and Julianne K.
40.0	Purdy, MD
406	Pneumatosis Coli
	Amitabh Srivastava, MD and Sharon K. Bihlmeyer, MD
410	Acute Infectious Colitis
	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
412	Focal Active Colitis
	Joel K. Greenson, MD and Sharon K. Bihlmeyer, MD
414	Campylobacter
	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
416	Salmonella
	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
420	Shigella
	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
	5 5 · · · · · · · · · · · · · · · · · ·

422	Clostridium difficile
428	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD Enterohemorrhagic <i>E. coli</i> Infections
	Gregory Y. Lauwers, MD
430	Spirochetosis Gregory Y. Lauwers, MD
432	Adenovirus
102	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
434	Malakoplakia
436	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD Histoplasma
430	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
438	Cryptococcus
	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
440	Entamoeba histolytica
442	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD Schistosomiasis
442	Gregory Y. Lauwers, MD and Laura Webb Lamps, MD
	SECTION 2: NEOPLASTIC
446	Benign Fibroblastic Polyp/Perineurioma Elizabeth A. Montgomery, MD
450	Ganglioneuroma
	Elizabeth A. Montgomery, MD
456	Hyperplastic Polyps, Colon
	Alexandros D. Polydorides, MD, PhD
462	Sessile Serrated Adenoma
468	Alexandros D. Polydorides, MD, PhD
408	Mixed Adenoma-Serrated Polyp Alexandros D. Polydorides, MD, PhD
470	Adenoma, Colon
	Alexandros D. Polydorides, MD, PhD
476	Adenoma With Pseudoinvasion
	Alexandros D. Polydorides, MD, PhD
478	Adenoma With Invasive Carcinoma
480	Alexandros D. Polydorides, MD, PhD Colorectal Adenocarcinoma
400	Joel K. Greenson, MD
490	Familial Cancer Syndromes in Colorectal Carcinoma
	Joel K. Greenson, MD
492	Familial Adenomatous Polyposis
400	Alexandros D. Polydorides, MD, PhD
498	Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer Syndrome)
	Joel K. Greenson, MD
500	Inflammatory Bowel Disease-Associated Neoplasia
	Alexandros D. Polydorides, MD, PhD and Julianne K.
	Purdy, MD
512	Well-Differentiated Neuroendocrine Tumor
	(Carcinoid), Colon
	Scott R. Owens, MD
514	Macrocytocic
	Mastocytosis Amitabh Scivactava, MD
	Amitabh Srivastava, MD

Part VI: Anus

SECTION 1: NONNEOPLASTIC

- 520 Hemorrhoids Alexandros D. Polydorides, MD, PhD and Julianne K.
- Purdy, MD
 524 Tailgut Cyst Alexandros D. Polydorides, MD, PhD and Julianne K.
 - Alexandros D. Polydorides, MD, PhD and Julianne I Purdy, MD

SECTION 2: NEOPLASTIC

- 530 Anal Intraepithelial Neoplasia Scott R. Owens, MD
- 536 Squamous Cell Carcinoma, Anus Scott R. Owens, MD
- 540 Basal Cell Carcinoma Scott R. Owens, MD
- 542 Paget Disease Scott R. Owens, MD
- 548 Anal Duct Carcinoma Scott R. Owens, MD

Part VII: Multiple Organs

SECTION 1: NONNEOPLASTIC

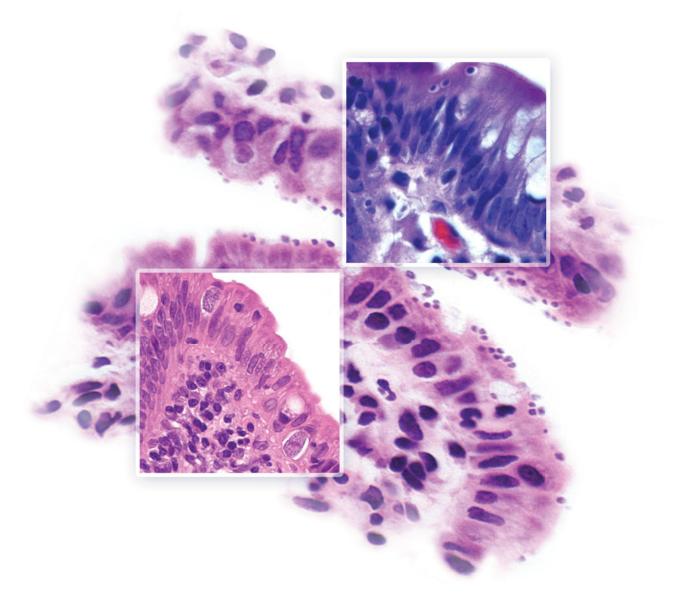
552	Amyloidosis
	Joel K. Greenson, MD and Nicole C. Panarelli, MD
556	Cytomegalovirus
	Joel K. Greenson, MD
562	Herpes Simplex Virus
	Joel K. Greenson, MD and Laura Webb Lamps, MD
566	Nonsteroidal Anti-Inflammatory Drug (NSAID)
	Damage
	Alexandros D. Polydorides, MD, PhD and Julianne K.
	Purdy, MD
572	Ischemia
	Joel K. Greenson, MD
576	Vasculitis
	Alexandros D. Polydorides, MD, PhD and Sharon K.
	Bihlmeyer, MD
584	Behçet Syndrome
	Amitabh Srivastava, MD and Sharon K. Bihlmeyer, MD
586	Graft-vsHost Disease
	Joel K. Greenson, MD
592	Mycophenolate Injury
	Joel K. Greenson, MD
594	Radiation Effect
	Joel K. Greenson, MD
596	Chemotherapy Effect
	Joel K. Greenson, MD
598	Taxane Effect
	Elizabeth A. Montgomery, MD
602	Colchicine Toxicity
CO A	Elizabeth A. Montgomery, MD
604	Kayexalate Injury
	Elizabeth A. Montgomery, MD

- 606 Hamartomatous Polyps, Cowden Syndrome Amitabh Srivastava, MD
- 614 Hamartomatous Polyps, Cronkhite-Canada Amitabh Srivastava, MD
- 616 Hamartomatous Polyps, Juvenile Amitabh Srivastava, MD
- 622 Hamartomatous Polyps, Peutz-Jeghers Amitabh Srivastava, MD

SECTION 2: NEOPLASTIC

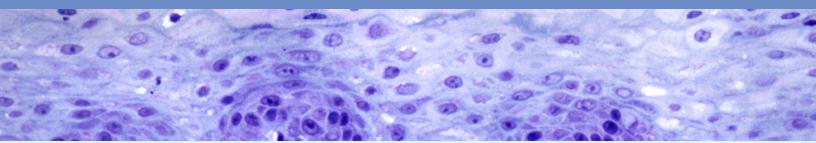
- 630 Leiomyoma Elizabeth A. Montgomery, MD
 634 Leiomyosarcoma Elizabeth A. Montgomery, MD
- 638 Gastrointestinal Stromal Tumor Elizabeth A. Montgomery, MD
- 648 Mesenteric Fibromatosis Elizabeth A. Montgomery, MD
- 652 Inflammatory Fibroid Polyp Elizabeth A. Montgomery, MD
- 658 Schwannoma Elizabeth A. Montgomery, MD
- 660 Inflammatory Myofibroblastic Tumor Elizabeth A. Montgomery, MD
- 668 Glomus Tumor Elizabeth A. Montgomery, MD
- 672 Primary Melanoma Scott R. Owens, MD
- 674 Metastatic Melanoma Elizabeth A. Montgomery, MD

This page intentionally left blank


DIAGNOSTIC PATHOLOGY

Gastrointestinal

SECOND EDITION


GREENSON

LAUWERS • MONTGOMERY • OWENS POLYDORIDES • SRIVASTAVA

This page intentionally left blank

PART I SECTION 1 Nonneoplastic

Tracheoesophageal Fistula and Esophageal Atresia	4
Esophageal Duplication Cyst	8
Inlet Patch	12
Esophageal Webs and Rings	16
Esophageal Diverticula	18
Esophageal Varices	24
Esophageal Tears and Perforations	26
Achalasia	28
Gastroesophageal Reflux Disease	32
Eosinophilic Esophagitis	38
Pill-Induced Esophagitis	42
Corrosive Damage (Lye)	46
Sloughing Esophagitis	48
Candidal Esophagitis	50
HIV-Associated Esophageal Ulcers	52
Barrett Esophagus	54

KEY FACTS

TERMINOLOGY

- Tracheoesophageal fistula (TEF): Congenital connection between esophagus (proximal &/or distal) and trachea
- Esophageal atresia (EA): Complete interruption of lumen

ETIOLOGY/PATHOGENESIS

- TEF: Incomplete separation of primitive foregut
- EA: Failure of primitive foregut to recanalize
- Associated congenital malformations in ~ 50%
 Cardiac defects in 30%; trisomy 18, 12, or 21
- Acquired TEF: Neoplasm, trauma, iatrogenic, inflammatory

CLINICAL ISSUES

- Incidence of 0.02-0.04%, usually (98%) with coexistent EA
- Excessive salivation, regurgitation, abdominal distention
- Coughing, choking, aspiration, respiratory distress, cyanosis

IMAGING

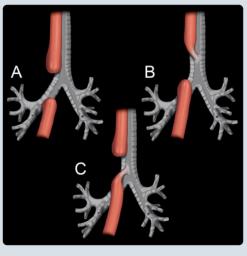
• Passed nasogastric tube (NGT) stops at 10-12 cm if EA

- Air in stomach/small bowel confirms a distal TEF
- US: Polyhydramnios, blind esophagus, no gastric bubble

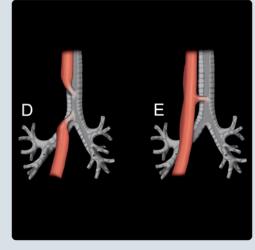
MACROSCOPIC

- Type A (type 2): EA only (5-8%)
- Type B (type 3A): EA with proximal TEF (0.8-1%)
- Type C (type 3B): EA with distal TEF (85-90%)
- Type D (type 3C): EA with both proximal & distal TEF (1-2%)
- Type E (H-type): TEF only (2-6%) ± esophageal stenosis
- Gross type F: Esophageal stenosis only
- Vogt type 1: Esophageal agenesis (complete absence)

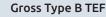
MICROSCOPIC

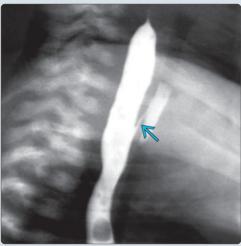

- Epithelium-lined connection (respiratory & digestive tubes)
- Irregular smooth muscle fibers, scar (fibrosis)
- Disrupted Auerbach myenteric plexus

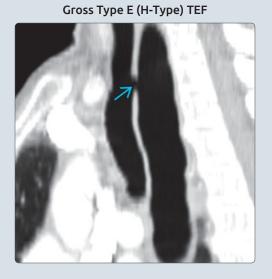
DIAGNOSTIC CHECKLIST


- Tracheobronchial elements in distal esophagus
- Gross appearance determines classification

(Left) Schematic of the gross classification of EA/TEF types: (A) esophageal atresia only, (B) esophageal atresia and proximal tracheoesophageal fistula, (C) esophageal atresia and distal tracheoesophageal fistula. (Right) Schematic of gross classification types (continued): (D) esophageal atresia with both proximal and distal tracheoesophageal fistula, (E) tracheoesophageal fistula only, \pm additional esophageal stenosis (H-type: No esophageal atresia).


Gross Classification of TEF




Gross Classification of TEF

(Left) Esophagram after barium swallow demonstrates a tracheoesophageal $communication \implies extending$ from the esophagus anteriorly and superiorly toward the trachea. In most type B TEFs, the opening in the trachea is usually near the carina. (Right) Sagittal view of contrast-enhanced CT shows a fistulous connection 🔁 between the trachea and the esophagus. This is an H-type congenital tracheoesophageal fistula. (From ExDDx: Chest.)

TERMINOLOGY

Abbreviations

- Tracheoesophageal fistula (TEF)
- Esophageal atresia (EA)

Definitions

- TEF: Congenital fistulous connection between esophagus (proximal &/or distal) and tracheobronchial tree
- EA: Complete interruption of esophageal lumen continuity
- Coloboma (of the eye), heart defects, choanal atresia (of the nose), growth &/or mental retardation, genital hypoplasia, and ear anomalies (CHARGE association)
- Vertebral anomalies, anal atresia, cardiac defects, TEF &/or EA, renal dysplasia, radial or limb anomalies (VACTERL association)

ETIOLOGY/PATHOGENESIS

Developmental Anomaly

- EA: Failure of primitive foregut to recanalize
- TEF: Incomplete separation of primitive foregut
 - Failure of lung/tracheal bud to completely separate
 Resulting fistulas vary, depending on amount of epithelium
 - Able to maintain foregut epithelial continuity
- Abnormal proliferation of tracheoesophageal septum
- Premature infants at increased risk
- Associated congenital malformations in ~ 50%
 - Cardiovascular, gastrointestinal, neurologic, genitourinary, or orthopedic
 - Cardiac defects present in 30%
 - □ Ventriculoseptal defects, tetralogy of Fallot
 - Usually > 1 (often other midline defects)
 - o VACTERL association in 20-30% of TEF/EA
 - So-called general foregut malformation
 - o 10% of CHARGE patients have TEF/EA
 - o 25% of Feingold syndrome patients have TEF/EA

Environmental Exposure

- Risk factors
 - Prenatal exposure to lead, drugs (e.g., methimazole), other physical agents
 - o Associated: Maternal diabetes, maternal age < 20 years
- Mostly occurs during 1st trimester
 - Time of major organogenesis

Genetic factors

- Associated with an euploidy (trisomy 18, 12, or 21) and other chromosomal aberrations
 Trisomy 18 associated in 6-10% of cases
- Monozygotic twins have higher risk of EA
 Morozygotic twins have sight compared to sight
- More than 2x higher risk compared to singletons
 Genes implicated: Retinoic acid receptors, *SHH*, and others

Acquired TEF

- Malignancy
- o > 50% of acquired TEFs
- Local injury
 - Blunt or penetrating mechanical trauma
 - Ingestion of caustic material
- latrogenic

- Surgery, stenting, endoscopy
- Endotracheal intubation, mechanical ventilation
- Inflammatory diseases and infections
 Tuberculosis, syphilis, herpes, Crohn disease

CLINICAL ISSUES

Epidemiology

- Incidence
 - o 0.02-0.04%, usually (98%) with coexistent EAo Most common esophageal congenital malformation
- Age
 - 20-30% of babies with TEF/EA are preterm
- Sex
 - EA is more common in males than females

Site

- Majority of TEF (~ 2/3) insert above carina
 Has practical implications during intubation
- Rest (1/3) are within 1 cm or below carina
- Multiple fistulas can also occur

Presentation

- Single umbilical artery at birth
- Excessive salivation, regurgitation, abdominal distention
 - Coughing, choking, aspiration
- Respiratory distress, cyanosis
- Reduced weight and height percentiles for age
- Type E (H-type) TEF: More difficult to diagnose clinically
 Minimal symptoms if long obligue fistula
 - Recurrent pneumonia, aspiration
- Esophageal stenosis may be asymptomatic if milder
 - Usually diagnosed at later age than EA
 - o Dysphagia, regurgitation, failure to thrive
 - With introduction of solid foods

Natural History

- Depends on birth weight, esophageal gap length, presence of pneumonia, and ventilator dependence
- Neonatal mortality from associated congenital anomalies
 Mostly cardiac defects
- Survival has improved from 87% to 94% in last 2 decades
 Early diagnosis, improved surgical/ventilation techniques
- Impairment reported by 15% of adult survivors

Treatment

- Options, risks, complications
 - Pneumonia, aspiration, foreign body obstruction
 - Disordered peristalsis, impaired sphincter function
 - Structural and functional defects after repair
 - Early pneumothorax, anastomotic leak (20%)
 - Pneumonia, wound infection, perforation
 - Anastomotic stricture (30-50%), recurrence (10%)
 - Tracheomalacia (25%), dysphagia, reflux (50%)
 - o Longstanding reflux may lead to Barrett esophagus
 - Adenocarcinoma reported 20 years after repair
 - Long-term endoscopic follow-up advocated
- Surgical approaches
 - Thoracotomy or thoracoscopy
 - Cervical incision (for high or type E TEF)

- Esophagus: Nonneo<u>plastic</u>
- Type A TEF: Underdeveloped distal esophageal segment makes surgical correction difficult
- Surgical repair feasible in patients with esophageal stenosis, but restenosis common

Prognosis

- Prognostic classification (Spitz classification)
 - Based on birth weight
 - Presence or absence of cardiac anomalies
 - Predicts long-term outcome (morbidity, mortality)

IMAGING

General Features

- Best diagnostic clue
 - Passed nasogastric tube (NGT) stops at 10-12 cm if EA
 - Chest x-ray shows NGT at superior mediastinum (T2-4)
 - Does not pass into stomach: Confirms diagnosis
 - If air/gas present in the stomach or small bowel
 - Additionally, confirms distal TEF

Ultrasonographic Findings

- Diagnosis on prenatal (3rd trimester) ultrasound
 - Maternal polyhydramnios
 - Prominent fluid-filled or blind-ending esophageal pouch
 - Small or absent gastric bubble

MACROSCOPIC

Gross (Vogt) Classifications (Frequencies)

- Type A (type 2)
 - EA only (5-8%)
 - Complete occlusion (missing mid segment)
- Type B (type 3A)
 - EA with proximal TEF (0.8-1%)
 - Distal esophageal bud
- Type C (type 3B)
 - o EA with distal TEF (85-90%)
 - TEF enters close to carina (up to 0.5 cm proximal)
 - Hypertrophied and dilated proximal esophagus
 - Secondary to efforts to swallow amniotic fluid
- Type D (type 3C)
- EA with both proximal and distal TEF (1-2%)
- Type E (H-type)
- TEF only (2-6%)
- No EA present
- May also have esophageal stenosis
- Gross type F
 - Esophageal stenosis only
- Vogt type 1
 - Esophageal agenesis (complete absence)

MICROSCOPIC

Histologic Features

- Epithelium-lined connection between respiratory and digestive tubes
- Irregular smooth muscle fibers, scar (fibrosis)
- Loss of tracheal ciliated epithelial lining

- Disrupted Auerbach myenteric plexus
- EA: Esophageal and tracheal muscle blend together • Hypertrophic muscle with extra myenteric plexus
- Congenital esophageal stenosis
 - Localized muscular hypertrophy
 - Cartilaginous tracheobronchial remnants
 - Membranous diaphragm or web in esophageal wall, obstructing lumen with small central perforation/apperture

Predominant Pattern/Injury Type

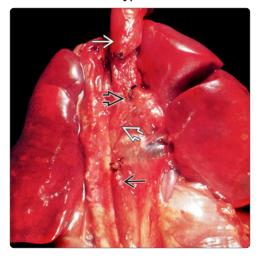
- Fibrosis
- Muscle hypertrophy

DIAGNOSTIC CHECKLIST

Clinically Relevant Pathologic Features

• Gross appearance • Determines classification according to type

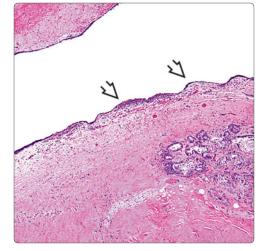
Pathologic Interpretation Pearls


- Tracheobronchial elements in distal esophagus
 - Ciliated pseudostratified columnar epithelium, seromucinous glands, or cartilage

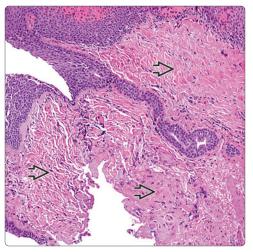
SELECTED REFERENCES

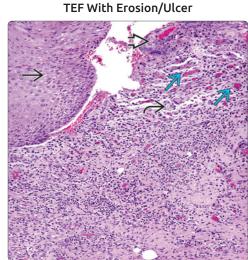
- Oezcelik A et al: General anatomy of the esophagus. Thorac Surg Clin. 1. 21(2):289-97. x. 2011
- de Jong EM et al: Etiology of esophageal atresia and tracheoesophageal fistula: "mind the gap". Curr Gastroenterol Rep. 12(3):215-22, 2010
- El-Gohary Y et al: Congenital anomalies of the esophagus. Semin Pediatr 3. Surg. 19(3):186-93, 2010
- Holland AJ et al: Oesophageal atresia and tracheo-oesophageal fistula: 4 current management strategies and complications. Paediatr Respir Rev. 11(2):100-6; quiz 106-7, 2010
- Kinottenbelt G et al: Tracheo-oesophageal fistula (TOF) and oesophageal atresia (OA). Best Pract Res Clin Anaesthesiol. 24(3):387-401, 2010
- Felix JF et al: Genetic and environmental factors in the etiology of esophageal atresia and/or tracheoesophageal fistula: an overview of the current concepts. Birth Defects Res A Clin Mol Teratol. 85(9):747-54, 2009
- Rintala RJ et al: Outcome of esophageal atresia beyond childhood. Semin 7. Pediatr Surg. 18(1):50-6, 2009
- Achildi O et al: Congenital anomalies of the esophagus. Otolaryngol Clin 8 North Am. 40(1):219-44, viii, 2007
- 9. Spitz L: Oesophageal atresia. Orphanet J Rare Dis. 2:24, 2007
- Goyal A et al: Oesophageal atresia and tracheo-oesophageal fistula. Arch Dis 10. Child Fetal Neonatal Ed. 91(5):F381-4, 2006
- 11. Naik-Mathuria B et al: Foregut abnormalities. Surg Clin North Am. 86(2):261-84, viii, 2006
- 12. Brunner HG et al: Genetic players in esophageal atresia and tracheoesophageal fistula. Curr Opin Genet Dev. 15(3):341-7, 2005
- 13. Kovesi T et al: Long-term complications of congenital esophageal atresia and/or tracheoesophageal fistula. Chest. 126(3):915-25, 2004

Tracheoesophageal Fistula and Esophageal Atresia


Gross Type C TEF

(Left) Gross image shows EA with a distal TEF ≥ between the distal esophagus and the trachea at the carina ≥. This gross type C TEF/EA is the most common type, accounting for > 85% of cases. (Right) This low-power image shows the narrow lumen of a TEF with parakeratotic squamous epithelium.


Tracheoesophageal Fistula



Irregular Smooth Muscle in TEF

(Left) Low-power magnification of an H&Estained section shows a fistulous connection with loss of tracheal cliated epithelial lining ≥. (Right) Low-power magnification of an H&Estained section shows irregular smooth muscle fibers ∋ and foreign body giant cell reaction ≥.

Submucosal Fibrosis in TEF

(Left) Medium-power magnification of an H&Estained section shows fibrotic submucosa 乏 below squamous epithelium. (Right) This medium-power magnification of an H&Estained section shows TEF with associated ulcer. Surface squamous epithelium \supseteq is disrupted by an erosion/ulcer I with associated capillary proliferation 🖂 (granulation tissue). Multinucleated giant cells can be seen reacting to foreign material 🔁. This should not be misdiagnosed as a malignancy.

KEY FACTS

TERMINOLOGY

• Benign, congenital, primitive foregut-derived, epitheliumlined outpouching or cystic mass of esophagus

ETIOLOGY/PATHOGENESIS

- Foregut duplication cysts: 3 types (bronchogenic, esophageal duplication cyst, neuroenteric)
- Abnormal (incomplete) embryologic/fetal luminal recanalization/obliteration

CLINICAL ISSUES

- ~ 1 in 8,200 live births; 10-20% of all GI duplications
- 2nd most common duplication site in GI tract after ileum
- Most (75%) diagnosed in early childhood; M:F = 2:1
- Majority (60-75%) located in lower (distal 1/3) esophagus
- Symptoms mostly due to mass effect
- Dysphagia, nausea, vomiting, weight loss, anorexia
- Respiratory distress (tracheobronchial tree compression)

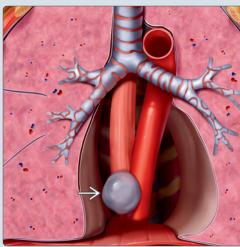
MACROSCOPIC

- Single, unilocular, fluid-filled outpouching/cystic mass
- Cystic (80-90%): No communication with esophageal lumen
- Tubular (10-20%): Communicate with esophageal lumen

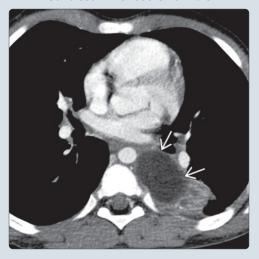
MICROSCOPIC

- Line by ciliated, pseudostratified, columnar epithelium
- No cartilage or seromucinous glands seen
- 2 perpendicular layers of smooth muscle
- Hemosiderin, chronic inflammation, calcifications common

TOP DIFFERENTIAL DIAGNOSES


- Bronchogenic cyst
 - Ciliated mucinous columnar (respiratory) epithelium
 - Intramural cartilage and seromucinous glands

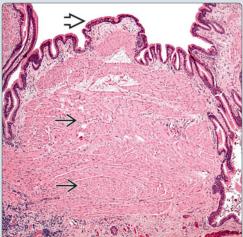
DIAGNOSTIC CHECKLIST


• Located within or attached to esophageal wall, lined by GI epithelium, and has double smooth muscle layer

(Left) Graphic shows the characteristic anatomic location of EDC \implies in the *inferior aspect of the middle* posterior mediastinum, to the right of the distal esophagus and within or adjacent to the esophageal wall. (Right) Contrast-enhanced CT shows a cyst 🔁 within the mediastinum immediately adjacent to the expected location of the esophagus (the esophagus is often not visible on CT scans). This is typical for an EDC, but pathologic confirmation is required.

EDC Location

Contrast-Enhanced CT of EDC



(Left) Spot film from esophagram in an elderly man with an EDC shows deviation of the distal third of the esophagus ➡, suggesting an extrinsic mass. (Courtesy DI2: Abdomen.) (Right) Lowpower magnification of an H&E-stained section from an EDC shows a well-developed smooth muscle layer ➡ and ciliated columnar epithelial lining ➡.

Esophagram of EDC

Muscle Layer in EDC

TERMINOLOGY

Abbreviations

• Esophageal duplication cyst (EDC)

Synonyms

- Intramural esophageal cyst
- Mediastinal gastric cyst
- Neuroenteric/enterogenic cyst
- Tubular duplication

Definitions

• Benign, congenital, primitive foregut-derived, epitheliumlined outpouching or cystic mass of esophagus

ETIOLOGY/PATHOGENESIS

Developmental Anomaly

- Foregut duplication cysts: 3 types
 - Bronchogenic (most common)EDC
 - Neuroenteric
- Proposed theories of pathogenesis
 - Abnormal (incomplete) embryologic/fetal luminal recanalization/obliteration
 - Failure of "coalescence of secretory vacuoles"
 - Timing of budding dictates location of cyst
 Early errors result in mediastinal cysts
 - Atypical blastogenesis of primitive foregut
 - Sequestration of portions of endoderm
 - Usually in 5th to 8th weeks of gestation
 - "Split notochord" theory
 - Notochord duplication with endoderm herniation
 Incomplete fusion of vertebral mesoderm
 - EDC associated with other congenital anomalies
 - Intrapulmonary bronchogenic cysts, neuroenteric cysts, sequestrations, bronchiectasis
 - Vertebral anomalies/defects (scoliosis, hemivertebrae, spina bifida)

CLINICAL ISSUES

Epidemiology

- Incidence
 - o ~ 1 in 8,200 live births
 - o 10-20% of all GI duplications
 - 2nd most common site of duplication in alimentary tract after small intestine (ileum)
 - o 0.5-2.5% of all esophageal masses/tumors
 - 2nd most common benign mass in lower esophagus
- Age
 - o Most cases (75%) are diagnosed in early childhood
 - Due to symptoms
 - 22% by 2 years old
- Sex
- o M:F = 2:1

Site

- Majority (60-75%) located in lower (distal 1/3) esophagus
 Generally mediastinal, adjacent to thoracic esophagus
- 2nd most common: Cervical (upper 1/3 of esophagus)
- Few case reports of intraabdominal EDC exist

Presentation

- Common symptoms (in children, usually 1st year of life)
 - Mostly due to mass effect
 - Esophageal wall compression
 - Dysphagia, nausea, vomiting, weight loss, anorexia
 Respiratory distress from tracheobronchial tree
 - compression
 - Dyspnea, wheezing, coughing, stridor, recurrent pneumonitis
 - Epigastric or substernal pain, fullness, hemorrhage, palpable mass (distention), or even perforation
- Usually asymptomatic in adults
 - Discovered incidentally

Treatment

- Options, risks, complications
 - Cystic: Complete surgical excision for definitive diagnosis – Whether symptomatic or incidental
 - Tubular: Surgical reconstruction for definitive repair
 - Surgical resection necessary to prevent complications
 - Benign complications
 - Potential for compression of adjacent organs
 Symptomatic upper airway obstruction
 - Increased incidence of reflux in adults with EDC
 - Ulcer, hemorrhage, perforation
 Especially if EDC contains gastric lining
 - Secondary superinfection, life-threatening rupture
 - Squamous cell carcinoma has been reported to arise in EDC
 - Risk is considered very low in general
- Surgical approaches
 - Cervical excision, axillary thoracotomy, median sternotomy, or minimally invasive thoracoscopy

IMAGING

General Features

- Location
- May mimic submucosal tumor
- Morphology
 - Barium swallow: Extrinsic impression on esophagus
 - Cyst fills with contrast only if in direct communication with lumen

Ultrasonographic Findings

- Endoscopic ultrasound (EUS) increasingly used for preoperative evaluation
 - Preoperative biopsy not recommended as resulting adhesions may complicate subsequent operation
- EDCs often present as anechoic or hypoechoic cysts

MR Findings

• Usually nonenhancing fluid density/cystic mass in posterior mediastinum

CT Findings

Spherical paraesophageal unilocular cystic lesion
 Thin cyst wall usually shows contrast enhancement

MACROSCOPIC

General Features

- Usually single, unilocular, ovoid, fluid-filled outpouching/cystic mass
- Cystic (80-90%): No communication with esophageal lumen
- Tubular (10-20%): Communicate with esophageal lumen • Generally run parallel to esophagus
 - Best seen on barium swallow, a "true" GI duplication

MICROSCOPIC

Histologic Features

- Usually lined by ciliated, pseudostratified, columnar epithelium
- Scattered mucus-secreting cells may be seen
- Denudation of epithelium is common
- Hemosiderin deposition (indicative of old hemorrhage) is often present
- Chronic inflammation and calcifications are common
- Cytologic atypia or complex architecture of epithelium is generally not observed
- Surrounding wall contains 2 perpendicular layers of smooth muscle (muscularis propria)
- No cartilage or seromucinous glands seen

Predominant Pattern/Injury Type

Cystic, microscopic or macroscopic

Predominant Cell/Compartment Type

- Epithelial lining
- Muscular wall

DIFFERENTIAL DIAGNOSIS

Bronchogenic Cyst

- Anterior defect in tracheoesophageal separation (aberrant bronchial budding)
- Ciliated mucinous columnar (respiratory) epithelium • Ciliated columnar epithelium can also be seen in EDC
- Intramural cartilage and seromucinous glands Not seen in EDC

Cystic Neoplasm

• Need to identify neoplastic epithelial cells

Branchial Cleft Cyst and Thyroglossal Duct Cyst

 Location rather than histology is best way to differentiate lesions from duplication cyst

Esophageal Retention Cyst (Mucocele)

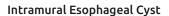
- Small, saccular or flask-shaped dilation of obstructed submucosal glands or excretory ducts
- Usually in lower esophagus; rarely reaches muscularis propria, so not true diverticula

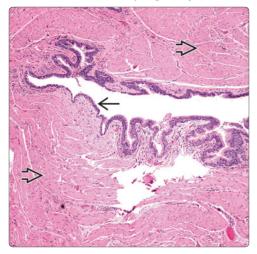
Simple Inclusion Cyst

• Lined by squamocolumnar epithelium

DIAGNOSTIC CHECKLIST

Clinically Relevant Pathologic Features

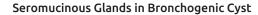

- Organ distribution
 - Classified by anatomic site, embryology, and lining

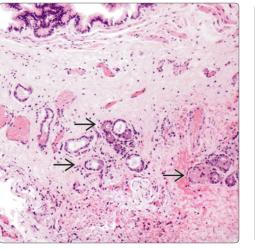

Pathologic Interpretation Pearls

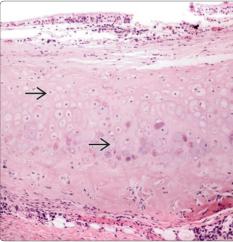
- Palmer pathologic criteria for diagnosis: EDC must be
 - Located within or attached to the esophageal wall
 - Lined by GI epithelium: Gastric, squamous, intestinal, pancreatic, or respiratory (embryologically related)
 - Covered by well-developed, double smooth muscle layer (muscularis propria)
- Diagnose as "foregut cyst" if
 - Ciliated columnar epithelium present, but
 - No other distinguishing features present, such as
 - □ Cartilage or respiratory glands (diagnose as bronchogenic cyst)
 - Double smooth muscle layer (diagnose as EDC)
- Cases of intraabdominal EDC have been reported
 - Do not meet Palmer's 1st criterion


SELECTED REFERENCES

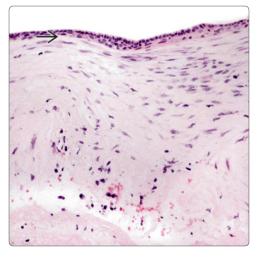
- Castelijns PS et al: Intra-abdominal esophageal duplication cyst: A case report 1. and review of the literature. World J Gastrointest Surg. 6(6):112-6, 2014
- Chaudhary V et al: Esophageal duplication cyst in an adult masquerading as submucosal tumor. Endosc Ultrasound. 2(3):165-7, 2013
- 3. Knod JL et al: Foregut duplication cyst associated with esophageal atresia and tracheoesophageal fistula: a case report and literature review. J Pediatr Surg. 48(5):E5-7, 2013
- Hammoud A et al: Foregut duplication cyst: an unusual presentation during 4 childhood. N Am J Med Sci. 4(6):287-9, 2012
- Gupta B et al: Duplication cyst of oesophagus: a case report. J Paediatr Child 5. Health. 46(3):134-5, 2010
- Lee NK et al: Complications of congenital and developmental abnormalities 6. of the gastrointestinal tract in adolescents and adults: evaluation with multimodality imaging. Radiographics. 30(6):1489-507, 2010
- Nayan S et al: Cervical esophageal duplication cyst: case report and review of the literature. J Pediatr Surg. 45(9):e1-5, 2010
- Stelow EB et al: Adenocarcinoma of the upper aerodigestive tract. Adv Anat 8. Pathol. 17(4):262-9. 2010
- 9 Martin ND et al: Intra-abdominal esophageal duplication cysts: a review. J Gastrointest Surg. 11(6):773-7, 2007
- 10. Herbella FA et al: Thoracoscopic resection of esophageal duplication cysts. Dis Esophagus. 19(2):132-4, 2006
- 11. Noguchi T et al: Laparoscopic resection of esophageal duplication cyst in an adult. Dis Esophagus. 16(2):148-50, 2003
- 12. Nelms CD et al: Thoracoabdominal esophageal duplication cyst. J Am Coll Surg. 194(5):674-5, 2002
- 13. Wootton-Gorges SL et al: Duplication of the cervical esophagus: a case report and review of the literature. Pediatr Radiol. 32(7):533-5, 2002
- 14. Singh S et al: Squamous cell carcinoma arising from a congenital duplication cyst of the esophagus in a young adult. Dis Esophagus. 14(3-4):258-61, 2001
- 15. Snyder CL et al: Esophageal duplication cyst with esophageal web and tracheoesophageal fistula. J Pediatr Surg. 31(7):968-9, 1996
- 16. Bajpai M et al: Duplications of the alimentary tract: clues to the missing links. J Pediatr Surg. 29(10):1361-5, 1994
- 17. Tapia RH et al: Squamous cell carcinoma arising in a duplication cyst of the esophagus. Am J Gastroenterol. 80(5):325-9, 1985

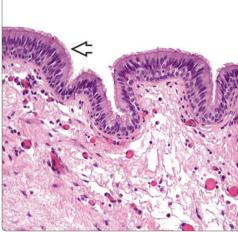



Double Muscle Layer in EDC



(Left) Medium-power view of an H&E-stained section shows an intramural esophageal cyst ⇒ located entirely within the muscularis propria ⇒ (Right) Low-power view of an H&Estained section from an EDC shows a well-developed double smooth muscle layer (muscularis propria) ⇒ Note the attenuated epithelium lining the cyst wall ⇒


Cartilage in Bronchogenic Cyst



(Left) Medium-power view of an H&E-stained section shows seromucinous glands ⊇ in the submucosa, which are diagnostic of a bronchogenic cyst. (Right) Medium-power view of an H&E-stained section shows cartilage ⊇ in the wall of this cyst, which is diagnostic of a bronchogenic cyst.

Simple Inclusion Cyst

Ciliated Epithelium in Foregut Cyst

(Left) Medium-power view of an H&E-stained section shows squamocolumnar epithelium \supseteq lining this simple inclusion cyst of the esophagus. (Right) High-power view of an H&Estained section shows ciliated columnar mucinous (respiratory) epithelium lining the cyst wall \boxtimes . In the absence of additional diagnostic clues (seromucinous glands, cartilage, or double smooth muscle layer), this is best diagnosed as a "foregut cyst" of the esophagus.

Inlet Patch

KEY FACTS

TERMINOLOGY

- Gastric columnar mucosa in cervical esophagus
 - Heterotopic gastric mucosa (HGM), microscopically
 Cervical inlet patch (CIP), macroscopically

ETIOLOGY/PATHOGENESIS

• Congenital: Incomplete squamous re-epithelization

CLINICAL ISSUES

- Incidence: 0.1-18%; most common esophageal heterotopia
- Tends to be clinically underestimated
 Depends on population, technique, awareness
- In cervical esophagus: At/near upper esophageal sphincter
- Usually asymptomatic; detected incidentally on screening
- Laryngopharyngeal reflux symptoms, treated with drugs
 Chest pain, dysphagia (often mild), globus sensation
- Acid-related complications
 Bleeding, ulcer, stricture, stenosis, fistula, perforation
- *Helicobacter pylori* colonization in 5-86% of cases

- Increased risk for Barrett esophagus reported
 Seen in up to 50% of patients with HGM in some studies
- Dysplasia/adenocarcinoma development exceedingly rare

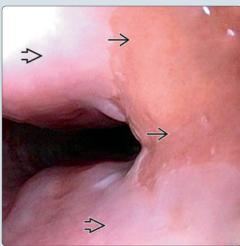
MACROSCOPIC

- Usually 2-30 mm, well circumscribed, salmon colored
- Single or multiple (twin patches), round or oval
- Flat, raised, depressed, or rarely polypoid

MICROSCOPIC

- Gastric surface/glandular epithelium: Usually fundic type
- Varying degrees of lymphoplasmacytic inflammation

TOP DIFFERENTIAL DIAGNOSES


- Columnar metaplasia/Barrett esophagus
- HGM can be mistaken for columnar-lined esophagus

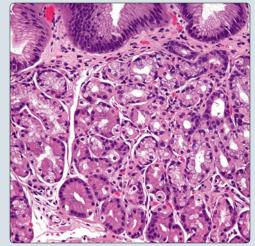
DIAGNOSTIC CHECKLIST

- Specific location of endoscopic biopsy needed for diagnosis
- HGM has been reported in almost any part of GI tract

(Left) Cervical inlet patch (CIP) grossly visible in the cervical esophagus during an upper endoscopy procedure appears as an island of salmon-colored, velvety mucosa \implies , sharply demarcated from the surrounding pearly white squamous epithelium 🖾. (From DP: GI Endoscopic Correlates.) (Right) Narrow band imaging (NBI) technique highlights the columnar mucosa of CIP as more red and irregular \blacksquare than the surrounding smooth, shiny, and whitish squamous mucosa \∃≥\.

Endoscopic Appearance of CIP

Endoscopic Appearance of CIP (NBI)



Fundic Gland-Type HGM

(Left) High-power magnification of H&E-stained section shows antral glandtype heterotopic gastric mucosa adjacent to squamous epithelium in a biopsy specimen from the upper esophagus. (Right) Highpower magnification of H&Estained section shows fundic gland-type heterotopic gastric mucosa with parietal cells in a biopsy specimen from the upper esophagus.

Antral Gland-Type HGM

TERMINOLOGY

- Abbreviations
- Cervical inlet patch (CIP)

Synonyms

• Heterotopic (ectopic) gastric mucosa (HGM)

Definitions

- Gastric columnar mucosa in cervical esophagus
 - HGM: Microscopically identified
 - CIP: Macroscopically visible

ETIOLOGY/PATHOGENESIS

Developmental Anomaly

- Considered congenital process by most
 - Incomplete replacement by squamous epithelization, which starts at ~ 5 months gestation
 - Persistence of original columnar epithelium
 - Similar to embryonic-type gastric mucosa
 - Premature migratory arrest of cells destined to differentiate into specialized gastric glands during their descent into future stomach ("cell arrest theory")

Environmental Exposure

- May be metaplastic change ("mixed theory")
 - o Following trauma, regurgitation, reflux, or infection
 - Subsequent healing through surfacing of HGM present in lamina propria as a congenital anomaly
 - Tentatively linked to Barrett esophagus
 - Co-incidence, shared mucin/cytokeratin profiles

CLINICAL ISSUES

Epidemiology

- Incidence
 - Most common heterotopia in esophagus
 - o Seen in 0.1-18% of published series
 - Prospective series: Endoscopic prevalence 0.3-11%
 Up to 70% prevalence in autopsy series
 - Tends to be clinically underestimated
 - Depends on population, technique, awareness
 - □ Often missed due to postcricoid location
 - Additional endoscopy time maybe needed to identify lesion
 - □ Awareness of lesion may increase prevalence 8x
 - Higher end of range seen in those endoscoped for symptoms of gastroesophageal reflux
- Age
 - Highest prevalence documented between 40-60 years
 May reflect population undergoing endoscopy
 - Also seen in pediatric population
- Sex
 - No sex predilection established

Site

- Most often in upper 1/3 of esophagus (cervical)
 At or just below upper esophageal sphincter
 - Within 3 cm (16-18 cm from incisors)
 - Usually in lateral (opposite) walls of esophagus
 - $\hfill\square$ Especially if double ("twin") or multiple lesions

Presentation

- Usually asymptomatic; detected incidentally on screening
- If symptoms are present, they are usually due to laryngopharyngeal reflux
 - o Chest pain, dysphagia (often mild), globus sensation
 - Presumably due to acid production by parietal cells
 - Acid suppression achieves symptom resolution
 - Severity has been related to size of HGM
- Cough/spasm, hoarseness, dyspnea/shortness of breath
- Associated lesions reported
 - Reflux esophagitis, duodenal ulcers, hyperplastic polyps in gastric antrum

Natural History

- Clinically significant acid-related complications reported
 - Bleeding, ulcer, stricture, stenosis, fistula, perforation
 May be serious or even life threatening
 - Chronic peptic esophagitis, esophagotracheal fistula Most are treated endoscopically (dilatation, resection)
- May give rise to or be associated with webs, rings, hyperplastic polyps

• All probably related to acid secretion

- *Helicobacter pylori* colonization in 5-86% of cases
 - When *H. pylori* also present in stomach
 - Suggests colonization through reflux
 - May function as reservoir of organisms
- Can cause esophageal webs and Plummer-Vinson or Paterson-Kelly syndrome
- Increased risk for Barrett esophagus reported
 - Seen in up to 50% of patients with HGM in some studies
 - Pathogenetic link suggested due to similar cytokeratin protein expression
- Dysplastic changes/malignant transformation reported
 - Biopsy needed to evaluate
 - < 50 cases of adenocarcinoma arising in HGM/CIP have been reported in literature

Treatment

- Options, risks, complications
 - Complete endoscopic mucosal resection of patch – Particularly in patients with dysplasia
 - Alternatives: Argon-plasma coagulation, surgical removal, and dilatation of strictures
- Drugs
 - First-line therapy for symptomatic patients
 - Proton-pump inhibitors, H2 receptor antagonists

IMAGING

Specimen Radiographic Findings

- Localized irregularities (high-density barium swallow)
 - Indentations, depressions, serrated outlines
 - Narrowing may represent esophageal stricture
 Prominent horder of CIP may cause rim like shade
 - Prominent border of CIP may cause rim-like shadows

MACROSCOPIC

General Features

- Usually 2-30 mm, well circumscribed, salmon colored
 Rarely, lesions up to 5 cm seen
- Single or multiple (twin patches), round or oval

- Flat, raised, depressed, or rarely polypoid
- Longitudinal, transverse, or circumferential
- Heaped margins may be seen
 Mostly on lateral and posterior surfaces
- Not always easily accessible by endoscopy

MICROSCOPIC

Histologic Features

- Gastric surface and glandular epithelium interposed between esophageal squamous mucosa
 - Usually fundic-type gastric epithelium
 - Less frequently: Antral or transitional type
- Varying degrees of lymphoplasmacytic inflammation but almost always seen
- Esophagitis common in adjacent mucosa, presumably due to acid secretion

Predominant Pattern/Injury Type

• Congenital/metaplastic

Predominant Cell/Compartment Type

• Epithelial, glandular

DIFFERENTIAL DIAGNOSIS

Columnar Metaplasia/Barrett Esophagus

- HGM can be mistaken for columnar-lined esophagus when biopsy site is not indicated as upper esophagus
 - Nevertheless, need to exclude presence of Barrett mucosa between HGM and gastroesophageal junction

Plummer-Vinson or Paterson-Kelly Syndrome

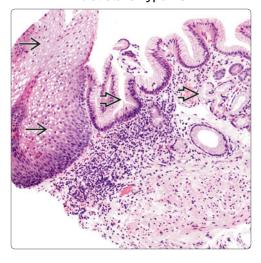
- a.k.a. sideropenic dysphagia
- Rare disease characterized by
 - Difficulty in swallowing
 - Iron deficiency anemia
 - Esophageal web(s)

DIAGNOSTIC CHECKLIST

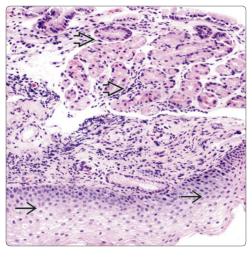
Clinically Relevant Pathologic Features

- HGM has been reported in almost any part of GI tract
 Duodenum, jejunum, Meckel diverticulum
 - Tongue, gallbladder, rectum, and anus
- Clinicopathologic classification proposed for CIP
 Categories I, II, III, IV, and V
 - Based on presence/absence of symptoms, complications, and neoplastic transformation

Pathologic Interpretation Pearls

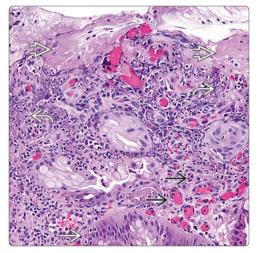

- Specific location of endoscopic biopsy needed for diagnosis
 Especially proximal vs. distal esophagus
 - To differentiate from cardia, Barrett mucosa
- Rare intestinal or pancreatic acinar metaplasia in HGM
- Malignant transformation (adenocarcinoma): Very rare
 Rate less than that seen in Barrett esophagus
 - High-grade dysplasia even more infrequent
 - Therefore, HGM generally not considered premalignant

SELECTED REFERENCES

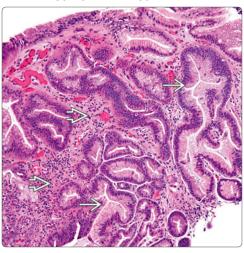

- 1. Chong VH: Clinical significance of heterotopic gastric mucosal patch of the proximal esophagus. World J Gastroenterol. 19(3):331-8, 2013
- Neumann WL et al: Gastric heterotopia in the proximal oesophagus ("inlet patch"): Association with adenocarcinomas arising in Barrett mucosa. Dig Liver Dis. 44(4):292-6, 2012
- Georges A et al: Inlet patch: clinical presentation and outcome in children. J Pediatr Gastroenterol Nutr. 52(4):419-23, 2011
- Rosztóczy A et al: Detailed esophageal function and morphological analysis shows high prevalence of gastroesophageal reflux disease and Barrett's esophagus in patients with cervical inlet patch. Dis Esophagus. 25(6):498-504, 2012
- 5. Behrens C et al: Esophageal inlet patch. Radiol Res Pract. 2011:460890, 2011
- Weickert U et al: Frequency, histopathological findings, and clinical significance of cervical heterotopic gastric mucosa (gastric inlet patch): a prospective study in 300 patients. Dis Esophagus. 24(2):63-8, 2011
- Bajbouj M et al: Argon plasma coagulation of cervical heterotopic gastric mucosa as an alternative treatment for globus sensations. Gastroenterology. 137(2):440-4, 2009
- Poyrazoglu OK et al: Heterotopic gastric mucosa (inlet patch): endoscopic prevalence, histopathological, demographical and clinical characteristics. Int J Clin Pract. 63(2):287-91, 2009
- 9. Yüksel I et al: Inlet patch: associations with endoscopic findings in the upper gastrointestinal system. Scand J Gastroenterol. 43(8):910-4, 2008
- Azar C et al: Prevalence of endoscopically identified heterotopic gastric mucosa in the proximal esophagus: endoscopist dependent? J Clin Gastroenterol. 41(5):468-71, 2007
- 11. Baudet JS et al: Heterotopic gastric mucosa: a significant clinical entity. Scand J Gastroenterol. 41(12):1398-404, 2006
- 12. Chong VH et al: Cervical inlet patch: case series and literature review. South Med J. 99(8):865-9, 2006
- 13. Lauwers GY et al: Cytokeratins 7 and 20 and mucin core protein expression in esophageal cervical inlet patch. Am J Surg Pathol. 29(4):437-42, 2005
- Akbayir N et al: Heterotopic gastric mucosa in the cervical esophagus (inlet patch): endoscopic prevalence, histological and clinical characteristics. J Gastroenterol Hepatol. 19(8):891-6, 2004
- Tang P et al: Inlet patch: prevalence, histologic type, and association with esophagitis, Barrett esophagus, and antritis. Arch Pathol Lab Med. 128(4):444-7, 2004
- von Rahden BH et al: Heterotopic gastric mucosa of the esophagus: literature-review and proposal of a clinicopathologic classification. Am J Gastroenterol. 99(3):543-51, 2004
- 17. Gutierrez O et al: Helicobacter pylori and hetertopic gastric mucosa in the upper esophagus (the inlet patch). Am J Gastroenterol. 98(6):1266-70, 2003
- 18. Avidan B et al: Is there a link between cervical inlet patch and Barrett's esophagus? Gastrointest Endosc. 53(7):717-21, 2001
- Maconi G et al: Prevalence and clinical features of heterotopic gastric mucosa in the upper oesophagus (inlet patch). Eur J Gastroenterol Hepatol. 12(7):745-9, 2000
- 20. Malhi-Chowla N et al: Gastric metaplasia of the proximal esophagus associated with esophageal adenocarcinoma and Barrett's esophagus: what is the connection? Inlet patch revisited. Dig Dis. 18(3):183-5, 2000
- Lauwers GY et al: Adenocarcinoma of the upper esophagus arising in cervical ectopic gastric mucosa: rare evidence of malignant potential of so-called "inlet patch". Dig Dis Sci. 43(4):901-7, 1998
- Maldonado ME et al: Pancreatic acinar metaplasia in an inlet patch. Gastrointest Endosc. 47(6):545-6, 1998
- Jacobs E et al: Heterotopic gastric mucosa in the upper esophagus: a prospective study of 33 cases and review of literature. Endoscopy. 29(8):710-5, 1997
- 24. Feurle GE et al: Distinct immunohistochemical findings in columnar epithelium of esophageal inlet patch and of Barrett's esophagus. Dig Dis Sci. 35(1):86-92, 1990

Inlet Patch

Antral Gland-Type HGM

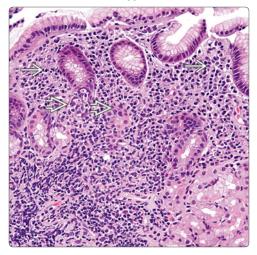


Fundic Gland-Type HGM

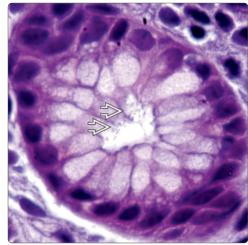


(Left) Medium-power magnification of H&E-stained section shows HGM with mucinous glands 🖘 resembling gastric antral gland-type mucosa. Squamous epithelium of the cervical esophagus $\overline{\rightarrow}$ can also be seen nearby. (Right) Medium-power magnification of H&E-stained section shows HGM with fundic-type glands 🖅 featuring parietal cells and resembling gastric fundus/body-type mucosa. The squamous epithelium of the esophagus \implies is adjacent.

Ulcer in HGM



Hyperplastic Polyp in HGM



(Left) High-power magnification of H&E-stained section shows an ulcer in HGM with surface erosion/fibrin deposits ➡, acute inflammation ➡, and proliferating capillaries ➡ in the background of HGM ➡ in the cervical esophagus. (Right) Medium-power magnification of H&E-stained section shows a gastric-type hyperplastic polyp with hyperplastic foveolar epithelium ➡ and an inflamed, expanded lamina propria ➡ arising in HGM.

Helicobacter pylori in HGM

Helicobacter pylori in HGM

(Left) Medium-power magnification of H&E-stained section shows Helicobacter pylori organisms involving heterotopic gastric mucosa. A superficial band of chronic inflammation can be seen ≥, along with active gastritis ≥. (Right) Very high-power magnification (oil immersion) of H&E-stained section shows Helicobacter pylori organisms ≥ in the superficial mucous layer.

KEY FACTS

TERMINOLOGY

- Esophageal webs (EW): Eccentric, < 2 mm, **mucosal** membranes at right angle to long axis of esophagus
- Esophageal ring (ER): Concentric, 2-5 mm, distal esophagus
 Type A = muscular ring; type B = mucosal (Schatzki) ring
- Plummer-Vinson or Paterson-Kelly syndrome (PVPK): Cervical EW, dysphagia, and iron-deficiency anemia

ETIOLOGY/PATHOGENESIS

- Embryologic remnants vs. result of inflammatory process
- Associations: Reflux, scleroderma, eosinophilic esophagitis

CLINICAL ISSUES

- Incidence: EW = 0.7-16%; ER type A = 4%, type B = 6-14%
- Mostly asymptomatic or solid dysphagia if lumen < 13 mm

IMAGING

- EW: Thin, curvilinear membrane on anterior wall
- ER: Symmetric notches that constrict lumen

MACROSCOPIC

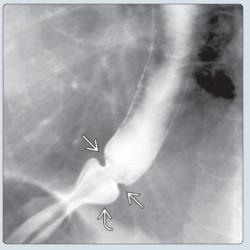
- EW: Mostly proximal esophagus (anterior postcricoid area)
- Type A ER: 2 cm proximal to squamocolumnar junction
- Type B ER: Annular membrane at squamocolumnar junction

MICROSCOPIC

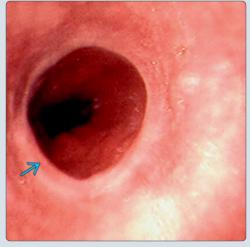
- EW: Incompletely encircles lumen, no muscle layer
- Type A ER: Squamous epithelium on both surfaces
 Significant muscular component (in contrast to type B)
- Type B ER: Squamous upper, columnar undersurface
 Muscularis mucosae fibers, no muscularis propria

DIAGNOSTIC CHECKLIST

- Multiple/congenital EW with lumen impingement
- Corrugated ringed esophagus (multiple ER)
 Concentric, evenly spaced ER over long segment
 - Some cases associated with eosinophilic esophagitis
- PVPK: Splenomegaly, glossitis, koilonychia, other autoimmune diseases (sprue, Sjögren syndrome)


(Left) Lateral view of barium esophagram with rapidsequence imaging in a 40-yearold woman with dysphagia shows esophageal web \supseteq , defined as thin, shelf-like eccentric membrane or indentation projecting from the anterior &/or lateral walls of the pharyngoesophageal junction at the proximal esophagus. (From DI2: Abdomen.) (Right) Endoscopic image shows view from above a lower esophageal mucosal (type B or Schatzki) ring 🔁 that encircles the lower esophageal lumen. (Courtesy T. Nostrant, MD.)

(Left) Radiograph after a barium swallow shows a small hiatal hernia \bowtie and an annular ring-like constriction or narrowing \blacksquare at the gastroesophageal junction, known as lower esophageal mucosal (type B) or Schatzki ring. (Right) Endoscopic image shows multiple concentric esophageal rings, also referred to as "feline esophagus" or corrugated ringed esophagus. This is often seen in patients with eosinophilic esophagitis. (Courtesy T. Nostrant, MD.)


Esophageal Web

Esophageal Ring (Type B or Schatzki)

Esophageal Ring (Type B or Schatzki)

Multiple Esophageal Rings

TERMINOLOGY

Abbreviations

- Esophageal webs (EW)
- Esophageal rings (ER)
- Plummer-Vinson or Paterson-Kelly syndrome (PVPK)

Definitions

- EW: Eccentric, < 2 mm, **mucosal** membranes, at right angle
- ER: Concentric, 2-5 mm, transverse folds in distal esophagus
 Type A = muscular ring; type B = mucosal (Schatzki) ring
- PVPK: Cervical EW, dysphagia, and iron-deficiency anemia

ETIOLOGY/PATHOGENESIS

Developmental Anomaly

- EW: Embryologic remnant vs. inflammatory process
 Chronic graft-vs.-host disease, heterotopic gastric mucosa, blistering skin diseases, radiotherapy, reflux
- Type A ER: Possibly exaggerated normal anatomy
- Type B ER: Thought congenital (but rare before age 40)
 Associated: Reflux, scleroderma, eosinophilic esophagitis

CLINICAL ISSUES

Epidemiology

- Incidence
 - o EW:0.7-16%
 - ER type A: ~ 4% (autopsy studies), usually children
 - ER type B: 6-14% (0.5% are symptomatic), over age 40

Presentation

- Mostly asymptomatic or solid dysphagia if lumen < 13 mm
- Rarely aspiration, reflux, spontaneous perforation
- Anemia in PVPK ("sideropenic dysphagia")

Natural History

• PVPK associated with oropharyngeal/esophageal cancer

Treatment

- Options, risks, complications
 - Treat underlying condition, lifestyle/dietary changes
 - Severe cases: Endoscopic mechanical disruption
 - Bougienage more successful in type B ERRefractory (last resort): Electrocautery or surgery

IMAGING

Specimen Radiographic Findings

- Best seen on lateral view after barium swallow
- EW: Thin, curvilinear membrane on anterior wall
- ER: Symmetric notches that constrict lumen
 - Type A ER thicker and broader than type B
 - Type "C" ER: Indentation by diaphragmatic crura
 - Asymptomatic, clinically inconsequential

MACROSCOPIC

General Features

- EW: Mostly proximal esophagus (anterior postcricoid area)
 May be missed or pierced on endoscopy
- Type A ER: 2 cm proximal to squamocolumnar junction
- Type B ER: Annular membrane at squamocolumnar junction

- Defines proximal border of coexistent hiatal hernia
- Encircles lumen at level of constrictor cardiae

MICROSCOPIC

Histologic Features

- EW: Incompletely encircles lumen, no muscle layer
 Normal squamous mucosa, inflamed submucosa
 Distal Etul. Contribution process in up descurface.
 - Distal EW: Gastric mucosa in undersurface
- Type A ER: Squamous epithelium on both surfaces
 Significant muscular component (in contrast to type B)
- Type B ER: Squamous upper, columnar undersurface
 Basal cell hyperplasia, submucosal fibrosis
 - o Muscularis mucosae fibers, no muscularis propria

DIFFERENTIAL DIAGNOSIS

Leiomyoma, Neuroma, Carcinoma

• Other lesions that produce ring-like defects

Annular Fibrous Stricture

- Ring-like peptic stricture
- Inflamed fibrous tissue from healed esophagitis
 - Thicker (> 3 mm) narrowing, less easily dilated

Vascular Rings

٠

- Vascular structures encircling trachea and esophagus
- Due to abnormal branchial arch development

"Feline Esophagus"

- Fine transverse folds on double contrast exam
- Probably due to prominent muscularis mucosae
- Incidental or associated with eosinophilic esophagitis

DIAGNOSTIC CHECKLIST

Clinically Relevant Pathologic Features

- Multiple/congenital EW with lumen impingement
 Form of esophageal stenosis
- Corrugated ringed esophagus (multiple ER)
 - Concentric, evenly spaced ER over long segment
 - Congenital, immunologic, or due to reflux
 - Some cases associated with eosinophilic esophagitis
 - Dilation difficult: Mucosal tears and perforations
- PVPK: Splenomegaly, glossitis, koilonychia, other autoimmune diseases (sprue, Sjögren syndrome)

Pathologic Interpretation Pearls

- EW: Proximal, not circumferential, thin membrane
- ER: Distal, concentric, thicker, mucosal, or muscular

SELECTED REFERENCES

- Smith MS: Diagnosis and management of esophageal rings and webs. Gastroenterol Hepatol (N Y). 6(11):701-4, 2010
- Lee GS et al: Intermittent dysphagia for solids associated with a multiringed esophagus: clinical features and response to dilatation. Dysphagia. 22(1):55-62, 2007
- Gordon AR et al: Cervical esophageal webs: association with gastroesophageal reflux. Abdom Imaging. 26(6):574-7, 2001
- Tobin RW: Esophageal rings, webs, and diverticula. J Clin Gastroenterol. 27(4):285-95, 1998
- DeVault KR: Lower esophageal (Schatzki's) ring: pathogenesis, diagnosis and therapy. Dig Dis. 14(5):323-9, 1996

KEY FACTS

TERMINOLOGY

- Esophageal diverticula (ED): Saccular lumen outpouchings
 Zenker diverticula (ZD): Pharyngoesophageal (proximal)
 - Midesophageal diverticula (MED): Thoracic (middle)
 - o Epiphrenic diverticula (EPD): Supradiaphragmatic (distal)
- (Diffuse) esophageal intramural pseudodiverticulosis (EIPD)

ETIOLOGY/PATHOGENESIS

- Pulsion: Mucosal herniation due to ↑ intraluminal pressure
 Usually false (no muscularis propria); e.g., ZD, EPD
 Localized point of wall weakness (Killian triangle)
- Traction: Wall pulled outward due to inflammation/scar
 Usually true (muscle layer present); e.g., MED
 Tuberculosis, sarcoidosis, histoplasmosis, lung mass
- EIPD: Infection, diabetes, alcohol, reflux, dysmotility
- Congenital diverticula: Rare, true diverticula (all 3 layers)

CLINICAL ISSUES

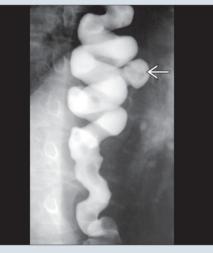
• Incidence up to 1-2%; mostly elderly; more common in men

- By ED type: ZD (70%), MED (15-21%), EPD (9-15%)
- Symptoms: Dysphagia, halitosis, regurgitation, obstruction
 Often can be asymptomatic, incidental (MED, EPD)
- Complications: Diverticulitis, perforation, aspiration
- Malignancy risk: Squamous cell carcinoma in 0.3-0.6%
- Myotomy & diverticulectomy or endoscopic stapling

IMAGING

• Thin-walled, air- or fluid-filled communication with lumen

MACROSCOPIC


- ZD: Midline posterior pouch, > 2 cm, left cervical protrusion
- MED: Single or multiple, wide-mouthed, anteriorly at carina
- EPD: Round, wide-mouthed, > 5 cm, right posterolateral
- EIPD: Numerous, flask-like, 1-10 mm, even & linear

MICROSCOPIC

- Hyperplastic squamous epithelium lines all acquired ED
- Presence/absence of muscularis layer determines ED type
- EIPD: Obstructed, cystically dilated submucosal ducts

(Left) Oblique view of barium esophagram shows dramatic appearance of esophageal dysmotility with a "corkscrew" appearance. Motility problems can create high intraluminal pressures and result in pulsion diverticula
. (Right) Medium-power view of an H&E-stained section shows a pulsion diverticulum with acanthotic and edematous squamous epithelium \boxtimes , thickened muscularis mucosae \supseteq , but no muscularis propria layer (a false diverticulum).

Pulsion Diverticulum

False Esophageal Diverticulum

True Esophageal Diverticulum

(Left) Low-power magnification of H&E-stained section shows an ED with hyperplastic squamous epithelium 🔁 (acanthosis) and absence of muscularis propria, hence a false diverticulum. (Right) Mediumpower view of an H&E-stained section shows a true esophageal diverticulum with all layers of the esophageal wall present: Squamous epithelium ⊇, submucosa ⊇, and a distinct muscularis propria 🔁.

i su lu so

Pulsion Diverticulum

Esophageal Diverticula

TERMINOLOGY

Abbreviations

- Esophageal diverticula (ED)
 - Zenker diverticulum (ZD)
 - o Midesophageal diverticula (MED)
 - Epiphrenic diverticula (EPD)
- (Diffuse) esophageal intramural pseudodiverticulosis (EIPD)

Synonyms

- ZD: Cervical, pharyngoesophageal, hypopharyngeal
- MED: Thoracic, parabronchial, tracheobronchial
- EPD: Supradiaphragmatic, distal

Definitions

- ED: Saccular outpouchings of epithelium-lined lumen
 Containing all or part(s) of esophageal wall
- EIPD: Multiple, ectatic, 0.1-1 cm submucosal glands
 Evenly and linearly distributed along wall

ETIOLOGY/PATHOGENESIS

Environmental Exposure

- ZD: Uncoordinated muscular contractions during swallowing &/or inadequate sphincter relaxation
 - Mucosal outpouching due to high intraluminal pressure
 Pathogenesis: Pulsion diverticulum
 - o Localized point of weakness (Killian triangle)
 - Junction of esophageal wall with pharynx
 - □ Transverse fibers of cricopharyngeus muscle
 - Oblique fibers of inferior pharyngeal constrictor
 - Association with reflux suggested, not confirmed
- Can coexist with cervical esophageal web or hiatal hernia
- MED: Necroinflammation in mediastinal lymph nodes
- Tuberculosis, sarcoidosis, histoplasmosis, lung mass
- o Esophageal wall pulled outward (traction)o Alternatively, pulsion MED can also occur
 - Motility disorders (achalasia, esophageal spasm, hypertensive lower esophageal sphincter)
- EPD: Usually due to increased intraesophageal pressure
- Mucosa pushed out in areas of weak muscle (pulsion)
 Pathogenesis: Functional or anatomic obstruction
 - Hypertrophic muscle layer distal to EPD
 - Frequently coexistent with hiatal hernia, diaphragm eventration, carcinoma, dysmotility (achalasia)
- EIPD: Unclear etiology, probably acquired
- Predisposing factors
 - Infectious agents: Candidiasis, herpes esophagitis
 - Diabetes, alcohol abuse, reflux, dysmotility
- Other associations
- Squamous carcinoma, chronic granulomatous disease
- Cyst formation due to duct obstruction

CLINICAL ISSUES

Epidemiology

- Incidence
 - By ED type: ZD (70%), MED (15-21%), EPD (9-15%)
 - ZD: 1-2% of dysphagic patients under radiography
- EIPD may affect up to 15-17% patients (autopsy series)Age

- ED: More common in elderly (6th and 7th decades)
 ZD patients slightly older: 7th or 8th decade
- EIPD: Large age range (8-83 years old)
- Sex
 - ZD: Male predominance (M:F = 2:1) EIPD: Males more commonly affected

Site

- ZD: Midline in posterior wall of proximal esophagus
- MED: Usually anteriorly, at or near tracheal bifurcation
- EPD: Right posterolateral wall, in distal 10 cm of esophagus

Presentation

- ZD: Dysphagia, halitosis, regurgitation of undigested food, cough, choking, obstruction, aspiration, secondary pneumonitis
- MED: Often asymptomatic, almost always incidental
 Unless there is coexisting diverticulitis
- EPD: Substernal pain, dysphagia, weight loss
- EIPD: Dysphagia, acute bolus obstruction
- Probably secondary to coexisting esophagitis/stricture

Natural History

- Secondary bacterial colonization may cause diverticulitis
- Perforation may lead to mediastinitis
- Enlarging ZD displaces proximal esophagus anteriorly
 May lead to esophageal compression
- EPD: Aspiration pneumonia, lung abscess, diverticulitis, esophageal obstruction, perforation, mediastinitis
- EIPD often associated with stricture (75% of patients)
- Malignant transformation
 - Squamous cell carcinoma reported in 0.3-0.6% of ED
 - With up to 7% reported in one series of ZD
 - Secondary to stasis and longstanding inflammation
 - Tend to have poor prognosis due to delayed diagnosis

Treatment

- Options, risks, complications
 - ZD: Follow if small; treat if large &/or symptomatic
 - Surgery: Myotomy plus diverticulectomy
 - Endoscopy: Stapling or incision of wall between diverticulum and esophagus (Dohlman procedure)
 - MED, EPD: Treat motility disorder if symptomatic - Esophagomyotomy if refractory or incapacitating
 - EIPD: Treat by dilating underlying stricture
 - Trauma, perforation, colonization by organisms
 - Foreign material: Esophagitis, submucosal fibrosis
 - Strictures and bridging between diverticula
 - Complications (10% of treated ED)
 - Diverticulitis, perforation, mediastinitis, hemorrhage
 - Tracheoesophageal or esophagocutaneous fistula
 - Mucosal ulceration (pill impaction)
 - Obstruction (foreign body, bezoar)
 - Vocal cord paralysis (recurrent laryngeal nerve)

IMAGING

Radiographic Findings

- Best seen on lateral esophagram after barium swallow
 - Characteristic contrast-filled outpouchings from lumen
 - Pulsion diverticula: Smooth rounded contour, wide neck

- Remain filled after barium emptied (no muscle in wall)
- Usually also evidence of esophageal spasm or dysmotility

CT Findings

• Confirm presence of thin-walled air- &/or fluid-filled structure communicating with esophageal lumen

MACROSCOPIC

General Features

- ZD: Pouches > 2 cm, typically with left cervical protrusion
- MED: Single or multiple, wide-mouthed, cephalad
- EPD: Round/globular, wide-mouthed, can be large (> 5 cm)
- EIPD: Numerous flask-like 1-10 mm lumen outpouchings • Evenly, linearly distributed along esophageal wall
 - Most numerous proximally
 - o Extend < 3-5 mm into wall, between folds

Endoscopy

Not indicated for evaluation of ED (risk of perforation)
 ED may complicate passage of nasogastric tube

MICROSCOPIC

Histologic Features

- Hyperplastic squamous epithelium lines all acquired ED • Unless ED develops in Barrett esophagus
- ZD: Lined by acanthotic squamous epithelium
 - Fibrotic wall, inflammation, lymphoid aggregates
 - Muscle layer usually absent or attenuated
 - Mucosa may be ulcerated
- MED: Variably inflamed squamous mucosa and submucosa
 Muscularis propria may be attenuated
- EPD: Squamous mucosa, submucosa, no muscularis propria
- EIPD: Multiple, cystically dilated submucosal ducts
 - By definition not real diverticula (pseudodiverticulosis)
 - Lumen contains mucin, inflammation, squamous debris
 - Cysts connect to lumen via pin-point ostium
 - Organisms (bacteria, fungi, parasites) can colonize cysts
 - Squamous metaplasia can occur
 - Fibrosis or stricture secondary to inflammation
- Congenital diverticula have all esophageal wall components
 True diverticula, by definition
 - Lined by columnar, ciliated, or squamous epithelium

Predominant Pattern/Injury Type

• Cystic, macroscopic

Predominant Cell/Compartment Type

• Epithelial, squamous

DIFFERENTIAL DIAGNOSIS

Esophageal Duplication Cyst

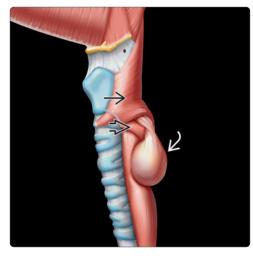
- Congenital, usually identified in early childhood
- Most are separate cysts, with no lumen communication
- Mostly lined by columnar epithelium

DIAGNOSTIC CHECKLIST

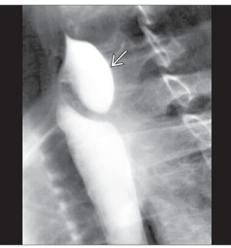
Clinically Relevant Pathologic Features

- ED classification by location and etiology/pathogenesis
 - Location in esophagus
 - ZD: Pharyngoesophageal (upper esophagus)
 - MED: Thoracic (middle esophagus)
 - EPD: Epiphrenic (lower esophagus)
 - o Morphology (wall composition): True vs. false (pseudo)
 - True diverticula contain all 3 esophageal wall layers
 - False diverticula contain mucosa and submucosa only
 - Underlying etiology: Congenital vs. acquired
 - Acquired diverticula usually lack muscularis propria
 Pathogenesis: Traction vs. pulsion
- ZD, EPD: Usually false diverticula, due to pulsion
 - Mucosa/submucosa herniation through esophageal wall
 As a result, no intact muscularis propria present
- MED: Usually true (all wall layers), due to traction
- EIPD: Dilated submucosal ducts, not real diverticula

Pathologic Interpretation Pearls

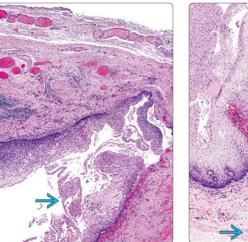

- Congenital ED: Associated with bronchopulmonary-foregut malformations (pulmonary sequestrations)
- EIPD with esophageal stricture: Rule out carcinoma

SELECTED REFERENCES


- 1. Bagheri R et al: Esophageal diverticula: Analysis of 25 cases. Asian Cardiovasc Thorac Ann. 22(5):583-587, 2013
- 2. Bergeron JL et al: Dysphagia characteristics in Zenker's diverticulum. Otolaryngol Head Neck Surg. 148(2):223-8, 2013
- 3. Law R et al: Zenker's Diverticulum. Clin Gastroenterol Hepatol. ePub, 2013
- 4. Lindholm EB et al: Congenital esophageal diverticulum a case report and review of literature. J Pediatr Surg. 48(3):665-8, 2013
- Prisman E et al: Zenker diverticulum. Otolaryngol Clin North Am. 46(6):1101-11, 2013
- Sayles M et al: Zenker's diverticulum complicating achalasia: a 'cup-and-spill' oesophagus. BMJ Case Rep. 2013, 2013
- Ballehaninna UK et al: Traction esophageal diverticulum: a rare cause of gastro-intestinal bleeding. Springerplus. 1(1):50, 2012
- 8. Dzeletovic I et al: Flexible endoscopic and surgical management of Zenker's diverticulum. Expert Rev Gastroenterol Hepatol. 6(4):449-65; quiz 466, 2012
- 9. Herbella FA et al: Esophageal diverticula and cancer. Dis Esophagus. 25(2):153-8, 2012
- Herbella FA et al: Modern pathophysiology and treatment of esophageal diverticula. Langenbecks Arch Surg. 397(1):29-35, 2012
- Khan N et al: Oesophageal pouches and diverticula: a pictorial review. S Afr J Surg. 50(3):71-5, 2012
- 12. Case DJ et al: Flexible endoscopic management of Zenker diverticulum: the Mayo Clinic experience. Mayo Clin Proc. 85(8):719-22, 2010
- Soares R et al: Epiphrenic diverticulum of the esophagus. From pathophysiology to treatment. J Gastrointest Surg. 14(12):2009-15, 2010
- 14. Conklin JH et al: Epiphrenic esophageal diverticula: spectrum of symptoms and consequences. J Am Osteopath Assoc. 109(10):543-5, 2009
- 15. Rice TW et al: Myenteric plexus abnormalities associated with epiphrenic diverticula. Eur J Cardiothorac Surg. 35(1):22-7; discussion 27, 2009
- 16. Ferreira LE et al: Zenker's diverticula: pathophysiology, clinical presentation, and flexible endoscopic management. Dis Esophagus. 21(1):1-8, 2008
- 17. Nutter KM et al: Esophageal diverticula: current classification and important complications. J Miss State Med Assoc. 45(5):131-5, 2004
- Achkar E: Esophageal diverticula. Gastroenterol Hepatol (N Y). 4(10):691-3, 2008
- Tobin RW: Esophageal rings, webs, and diverticula. J Clin Gastroenterol. 27(4):285-95, 1998
- 20. Shay SS: Benign structural lesions of the esophagus. Gastroenterol Clin North Am. 20(4):673-90, 1991

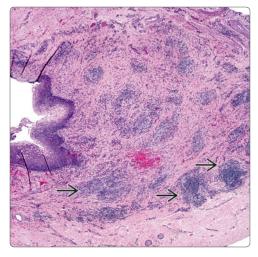
Esophageal Diverticula

Zenker Diverticulum



Zenker Diverticulum

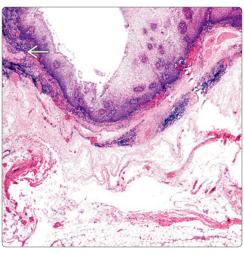
(Left) Graphic shows Zenker diverticulum (ZD) 🔁, a false ED resulting from high intraluminal pressure, and outpouching (pulsion) of the esophageal lumen through the oblique fibers of the inferior pharyngeal constrictor \boxtimes and the transverse fibers of the $cricopharyngeus \implies muscles.$ (Right) Oblique view of barium esophagram shows a classic, moderate-sized ZD → originating at the pharyngoesophageal junction and extending into the upper mediastinum.


Zenker Diverticulum

Zenker Diverticulum

(Left) Medium-power magnification of an H&Estained section shows a ZD with acanthosis ⊇, chronic inflammation ⊇, and absent muscularis propria (false diverticulum). (Right) Highpower magnification of an H&E-stained section shows a ZD with acanthotic surface squamous epithelium ⊇, fibrotic lamina propria ⊇, and a slightly thickened muscularis mucosae ⊇.

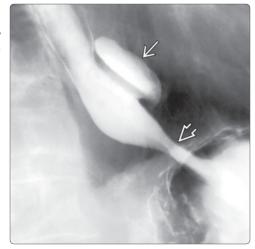
Zenker Diverticulum

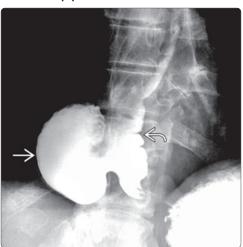


Zenker Diverticulum

(Left) Low-power magnification of an H&Estained section shows inflamed fibrotic wall of a ZD with prominent lymphoid aggregates ⊇ (Right) Medium-power magnification of an H&E-stained section shows a ZD with hyperplastic squamous epithelium ⊇ and trapped food particles ⊇ in the lumen.

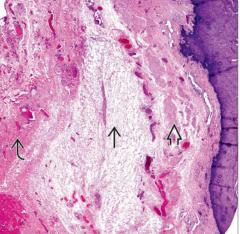
(Left) Low-power magnification of an H&Estained section shows the wall of a ZD with prominent chronic inflammatory infiltrates ➡ and fibrosis, but no muscularis propria (false diverticulum). (Right) Highpower view of an H&E-stained section shows the wall of a ZD with prominent lymphoid aggregates ➡.

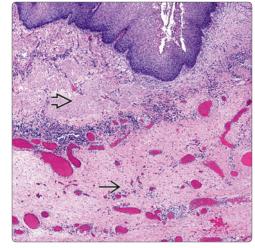

Zenker Diverticulum



(Left) Barium esophagram shows an epiphrenic diverticulum ➡ just above the gastroesophageal junction ➡. (Right) Esophagram in an elderly patient with dysphagia and halitosis shows a large epiphrenic diverticulum ➡ and esophageal dysmotility with tertiary contractions ➡. (From DI2: Abdomen.) Epiphrenic Diverticulum

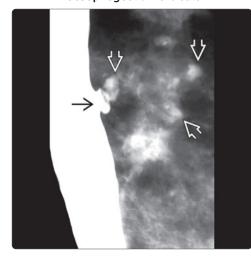
Epiphrenic Diverticulum



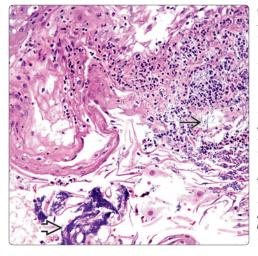

(Left) Low-power view of an H&E-stained section shows an epiphrenic diverticulum with thickened muscularis mucosae (E), edematous submucosa (E), and fibrosis (E), but absent muscularis propria layer

(therefore a false diverticulum). (Right) Mediumpower magnification of an H&E-stained section shows an esophageal diverticulum with thickened muscularis mucosae 🖾 and fibrotic submucosa 🖂.

Epiphrenic Diverticulum

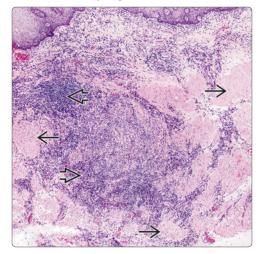


Esophageal Diverticulum



Esophageal Diverticula

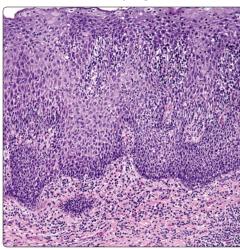
Midesophageal Diverticulum



Midesophageal Diverticulum

(Left) Barium esophagram shows a midesophageal diverticulum \supseteq in a patient with tuberculosis. Note the multiple calcified mediastinal lymph nodes ➡, which pulled the esophageal wall outward (traction), creating this true diverticulum. (Right) Highpower magnification of an H&E-stained section shows a midesophageal diverticulum with a very inflamed and partially necrotic squamous epithelium containing bacterial colonies ₽ and fungal organisms (Candida) \supseteq , a common complication in all ED.

True Esophageal Diverticulum



Diverticulitis in Esophageal Diverticula

 \rightarrow

Intramural Pseudodiverticulosis

(Left) Medium-power magnification of an H&Estained section shows a true esophageal diverticulum with a visible muscularis propria layer ightarrow and prominentinflammation 🖅. (Right) Barium esophagram shows diffuse esophageal intramural pseudodiverticulosis: Multiple small, flask-shaped outpouchings containing barium ➡ diffusely distributed in the esophageal wall. Not real diverticula, these are ectatic submucosal glands. (From ExDDx: Abdomen.)

Boerhaave Syndrome (Mimic)

(Left) High-power magnification of an H&Estained section shows diverticulitis in an ED with mostly chronically inflamed mucosa and submucosa. (Right) Oblique view of barium esophagram shows an irregular paraesophageal collection of contrast material (and gas) ➡ in the lower mediastinum, which has leaked out of the perforated distal esophagus. (From ExDDx: Abdomen.)

KEY FACTS

TERMINOLOGY

• Spontaneous portosystemic collaterals between vascular channels dilated due to portal hypertension

ETIOLOGY/PATHOGENESIS

- Submucosal plexus receives portal & drains systemic blood
- Occur mostly within 3 cm proximal to GEJ (palisade zone)
- Dilated deep intrinsic veins become subepithelial
- \uparrow lumen pressure \rightarrow \uparrow vessel diameter \rightarrow \downarrow wall thickness

CLINICAL ISSUES

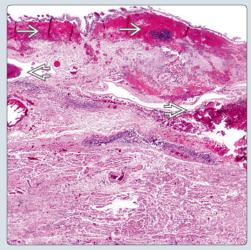
- 40-60% of patients with cirrhosis; 1/2 will bleed
 Responsible for 10-30% of all upper GI bleeding
 30-40% initially fatal; up to 50% fatal in 6 weeks
- Asymptomatic until rupture: Massive hematemesis
 Some patients: Antecedent vomiting, melena
- EV bleeding risk: 1 size (radius), severe liver dysfunction, red color sign (endoscopy), ongoing alcohol abuse

- Treatment: Prevent initial bleed (1° prophylaxis), control acute hemorrhage, avoid rebleed (2° prophylaxis)
 o Local endoscopic obliteration or ↓ portal pressure
- Most important survival determinant: Liver function

MACROSCOPIC

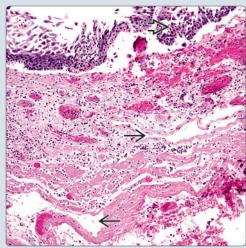
- Usually collapse after resection (difficult to detect)
- Endoscopic grading (1-4) correlates with risk of bleed
 Telangiectasias, "red color" signs (cherry red spots): Dilated subepithelial vessels seen through thin mucosa

MICROSCOPIC

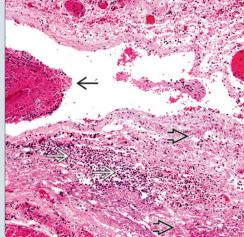

- Dilated subepithelial blood-filled channels
 Hemorrhage, rarely intravenous thrombosis
- Edema, epithelial necrosis, inflammation
- Deep esophageal vessels: Thickened and sclerotic
- Organized thrombi can be seen after sclerotherapy
 Elastic stain can highlight this
- Old thrombosis/hemorrhage in areas of prior rupture

(Left) Photograph shows the endoscopic appearance of grade 2 esophageal varices. (Courtesy K. Turgeon, MD.) (Right) Low-power magnification of an H&Estained section shows subepithelial hemorrhage ➡ and dilated, blood-filled vascular channels ➡ in the submucosa of the esophagus (esophageal submucosal venous plexus).

Endoscopic View of Esophageal Varices



Esophageal Varices



(Left) High-power magnification of an H&Estained section shows attenuated surface epithelium ☞ and dilated submucosal vessels ▷ (Right) High-power magnification of an H&Estained section shows a thrombus in a submucosal vessel ▷, necrosis ▷, and acute inflammation ☑ after paravariceal injection of a nearby esophageal varix.

Esophageal Varices

Esophageal Varices After Injection

TERMINOLOGY

Abbreviations

• Esophageal (gastroesophageal) varices (EV)

Definitions

• EV: Spontaneous portosystemic collaterals between vascular channels dilated by portal hypertension (PH)

ETIOLOGY/PATHOGENESIS

Recruitment of Preformed Channels

- Esophageal submucosal venous plexus
 - Receives (portal) blood: From left coronary gastric vein and short gastric veins (splenic bed)
 - Drains (systemic) blood: Cephalad through azygous vein and intercostal veins into superior vena cava

Lower Esophageal Anatomy (Palisade Zone)

- Sparse submucosal vasculature but numerous thin longitudinal vessels in lamina propria of mucosa
- Mostly within 3 cm proximal to gastroesophageal junction
 EV most superficial at this site, thin muscularis mucosae

Portal Hypertension and Laplace Law

- Dilated deep intrinsic veins become subepithelial
- ↑ lumen pressure → ↑ vessel diameter → ↓ wall thickness
 ∧ Rupture: Expanding force exceeds wall tension
- Overexpression of nitric oxide synthase in mucosa
 Development of portosystemic collaterals
- Venous stasis: Anoxia, necrosis, ulceration, ↑ risk of bleed
- EV size depends on severity of liver disease, duration of PH

CLINICAL ISSUES

Epidemiology

- Incidence
 - o 40-60% of patients with cirrhosis; 1/2 will bleed
 - Responsible for 10-30% of all upper GI bleeding

Presentation

- Asymptomatic until rupture: Massive hematemesis
- Some patients: Antecedent vomiting, melena
- Splenomegaly, hypersplenism, caput medusa

Natural History

- Bleed: Early morning, late evening (highest pressure)
 - 30-40% initially fatal; up to 50% fatal in 6 weeks
 - 60-70% will stop bleeding, but high risk of rebleed within 1 week

Treatment

- Options, risks, complications
 - Prevent initial bleed (1° prophylaxis), control acute hemorrhage, avoid rebleed (2° prophylaxis)
 - Local endoscopic obliteration
 - Injection sclerotherapy: Intra- or paravariceal
 Inflammation, fibrosis, venous thrombosis
 - Band ligation: Strangulate EV; safer, ↑ recurrence
 □ Necrosis, ulcer, thrombosis, fibrosis
 - ↓ portal pressure (prevent EV formation and growth)
 - Transjugular intrahepatic portosystemic shunt
 □ ↓ rebleeds, no survival benefit, encephalopathy

 Complications: Esophagitis, stenosis, stricture, tear, perforation, dysmotility/reflux, hemolysis
 Portal vein thrombosis (intravariceal injection)

Prognosis

- EV bleeding risk: ↑ size (radius), severe liver dysfunction, red color sign (endoscopy), ongoing alcohol abuse
 - EV can rupture without triggering event
 - No clear correlation with increased portal pressure
- Rare if hepatic venous pressure gradient < 12 mm Hg
 Early rebleed: Gastric, large size, high pressure gradient,
- alcoholic cirrhosis, thrombocytopenia, encephalopathy Most important survival determinant: Liver function
- Better prognosis: Noncirrhotic thrombosis, idiopathic PH

IMAGING

Ultrasonographic Findings

• Heterogeneous liver, splenomegaly, collaterals, dilated/thrombosed portal vein, gallbladder thickening

MR Findings

• Angiography: Defines portal anatomy, occlusion site

MACROSCOPIC

General Features

Usually collapse after resection (difficult to detect)
 Visualize through transillumination or gelatin filling

Endoscopy: Precise Diagnosis, Initial Therapy

- Telangiectasias, "red color" signs (cherry red spots): Dilated subepithelial vessels seen through thin mucosa
- Red wale marks: Raised longitudinal 1-2 mm streaks
 "Blowouts" on larger (> 5 mm) submucosal vessels
 Most advanced grade of EV ("varices on varices")
- Grading (1-4) thought to correlate with risk of bleed
- Well-developed EV: Bluish, sinuous, linear elevations

MICROSCOPIC

Histologic Features

- Dilated subepithelial blood-filled channels
 Hemorrhage, rarely intravenous thrombosis
- Edema, epithelial necrosis, inflammation
- Deep esophageal vessels: Thickened and sclerotic

DIAGNOSTIC CHECKLIST

Pathologic Interpretation Pearls

- Organized thrombi can be seen after sclerotherapy
 Elastic stain can highlight this
- May see old thrombosis and old hemorrhage
 In areas of prior rupture

SELECTED REFERENCES

- Turon F et al: Variceal and other portal hypertension related bleeding. Best Pract Res Clin Gastroenterol. 27(5):649-64, 2013
- García-Pagán JC et al: Acute variceal bleeding. Semin Respir Crit Care Med. 33(1):46-54, 2012
- 3. de Franchis R et al: Novel developments in esophageal vascular disorders. Curr Opin Gastroenterol. 24(4):490-5, 2008